单质点体系地震作用的处理方法

单质点体系地震作用的处理方法

ID:42553759

大小:402.91 KB

页数:11页

时间:2019-09-17

单质点体系地震作用的处理方法_第1页
单质点体系地震作用的处理方法_第2页
单质点体系地震作用的处理方法_第3页
单质点体系地震作用的处理方法_第4页
单质点体系地震作用的处理方法_第5页
资源描述:

《单质点体系地震作用的处理方法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、单质点体系地震作用的处理方法黄宇(51116),杨星蕊(51134),高霰(52569),冯永艳(51159)在讨论这个题目之前,首先我们要明确在我们的计算中,什么是单质点体系,哪些结构可以视作单质点体系。根据我们所学的知识,地震作用对结构物产生的影响属于结构动力学部分分析内容。而结构动力分析地基本特征是需要考虑惯性力的作用。所以体系质量的分布及其运动方向(即位置变化特征)是决定结构动力特征的关键因素之一。实际结构都是由变形体构成的,而且质量是连续分布的。所以,确定振动过程中全部质量位置的独立几何参数就需要无限多个,属于无限自由度的体系。因

2、此,在实际计算时,常常是将无限自由度的振动问题近似的转化为有限自由度的方法。而当刚性质体的几何尺寸较小时,又可以忽略因转动引起的惯性力矩,即其视为一个质点。实际工程中,由于横梁的刚度远大于柱子的刚度,分析时,可将横梁视为无限刚性,质量分别集中到两端。因此常将如图所示的排架视为单质点体系。根据动静法列静力平衡方程,质体运动微分方程为:mx+kx+ex=Fp©)地震波是一种弹性波,它包括体波和面波,体波分为纵波和横波,面波分为瑞雷波和洛夫波。地震波传播速度以纵波最快,横波次之,面波最慢。纵波使工程结构产生上下颠簸,横波使工程结构产生水平摇晃,当

3、体波和面波同时到达时振动最为剧烈。尽管地震运动是三维运动,但是建筑结构通常具备一定的弹性。当其处于弹性状态时,可将三维地面运动对结构的影响分解为三个一维地面运动对结构的影响之和。地震水平地面运动作用为例进行讨论。当单质点体系受到地震水平地面运动作用时,将产生相对于地面的水平运动。质体受到三个力作用:一:惯性力:F=-m(x+x)"I,其中Xa为地面加速度,X为质体相对的加速度;g••二:阻尼力:Fex三:弹性恢复力:Fkx+三力平衡,对应的方程式为:方程②表示,当结构遇到地震时,相当于将等效外力F=-MXa施加于质量自由度方向mxexkxm

4、x②g上,体系将在动力作用(即地震作用)下产生振动,此时情况为强迫振动即受迫振动,支承处运动对于体系的动力作用就相当于在质量上施加一动力荷载。下面开始求解。.m.sin(t)dyy+o2y=一g3一T()=一f(T)0••1/~co=qps注:1-因为很小,所以我们取d一般情况下,结构原始处于静止状态,所以以上即可作为结构在地震作用下的运动方程。而只能用概率统计的方法寻求其统计规律,所以,由于Xg(t)不能表示为时间的确定性函数,结构可以简化为单质点体系(如图所示)(t尽管地震的地面运动是三维运动,但因此结构处于弹性状态,可将三维地面运动对

5、结构的影响分解为三个一维地面运动队结构的影响之和。故以下只讨论单向水平地震对单质点体系的影响。单质点体系在地震水平地面运动作用下,将产生相对于地面的水平运动,如图所示,此时质点上作用有三种力:地曲加連度执②式单质点系在单向地面水平运动下的运动方程,在数学上为二阶线性微分方程。在另初始条件(初位移X(0)=0,初速度为0)下,方程的解为()=_亠f(T)一汕』S%(t_T)*Otxxetado该式实际上是用积分形式表达的单质点体系地震位移反映。其中:为无阻尼体系自由振动圆频率;为阻尼比。一般工程结构值较小,在0.01-0.1之间;为有阻尼时体

6、系自由振动圆频率。一般情况『,着丐式梟于肘间彳越什和石次,则可得体系地震速度反应和地震加速度,注意到一般値很小,则两式可近似简化为•X(+t=3fxe(t(T)3-TTt)a0cos(t)d••+七3t••(t)XgtX(Xe(:)t)d0+%1asin(t)d对于工程设计来说,最有用的是结构地震吋程反应(内力、变形等)的最大值。由数学原理知,当结构位移反应取最大值时,结构速度反应为0。对比上面的表捽斗得OOxgxIr2x…maxkXmaxQmxgX上式左端为质点的最大惯性力,将其定义为地震作用,即F二mXgxmax则式F=kXmax成为一

7、静力方程。按静力分析方法就可得到结构的最大地震位移及相应的内力反应。°°0为计算地震作用,定义如下地震加速度反应谱Sa=xgXmax因地震反应谱可预先计算得到,若以确定地震反应谱,则单质点体系的地震作用可根据其子镇周期对应的反应谱值十分简便地按F=mSa(T)计算得到。Sa(T)又因地震反应谱与地面运动幅值和频谱有关,为分别考虑他们的影响,引进两个参数动力系数max地震反应谱即可表达为:Sa(T)=kg卩(T)1.地震系数的取值可与地震烈度设防标准相联系。设防烈度一般定义为结构设计基准内超越概率为10%的烈度水平,各地的设防烈度即可取为当地

8、的基本烈度。当结构设计基准期为50年时,小震烈度比中震烈度约小1.5度,大烈度比中烈度约大1度(当基本烈度为9度时不到1度)。2.动力系数的取值与结构的阻尼有关,其图如下,我国建

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。