欢迎来到天天文库
浏览记录
ID:42382371
大小:183.50 KB
页数:4页
时间:2019-09-14
《高考数学构造新数列与数列中的放缩法(大纲版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、构造新数列与数列中的放缩法数列问题中的构造新数列与放缩法证明不等式在近几年高考题中经常出现。这类题目的难度及区分度往往很大,考生不容易掌握,有时甚至无从下手。现通过几个具体问题的分析谈谈常用的构造数列的方法与放缩手段,希望对众考生的备考有所帮助.例1已知数列{a}满足:a=1且.(1)求数列{a}的通项公式;(2)设mN,mn2,证明(a+)(m-n+1)分析:这是06年河北省高中数学竞赛的一道解答题(1)大家都知道数列的递推公式往往比通项公式还重要.这就引导我们要重视数列的递推公式由已知有a=,学生对形如,
2、A,B是常数)形式的一次线性递推关系的数列通过构造新数列求通项公式的方法已不陌生,本题中的递推关系显然不是此类型.那么我们能否也可通过待定系数法构造新数列呢?不妨设即与比较系数得c=1.即又,故{}是首项为公比为的等比数列,故(2)这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.即证,当m=n时显然成立。易验证当且仅当m=n=2时,等号成立。设下面先研究其单调性。当>n时,即数列{}是递减数列.因为n2,故只须证即证。事实上,故上不等式成立。综上,原不等式成立。无独有偶,在不到1个月的06年全国一
3、卷高考题22中恰出现了本例中构造数列求通项公式的模型。有兴趣的同学可找做一做。例2设数列{}满足(1)求{}的通项公式;(2)若求证:数列{}的前n项和分析:(1)此时我们不妨设即与已知条件式比较系数得又是首项为2,公比为2的等比数列。.(3)由(1)知.当时,当n=1时,=1也适合上式,所以,故方法一:,(这步难度较大,也较关键,后一式缩至常数不易想到.必须要有执果索因的分析才可推测出.).方法二:在数列中,简单尝试的方法也相当重要.很多学生做此题时想用裂项相消法但是发现此种处理达不到目的.但是当n3时,我
4、们看:易验证当n=1,2时.综上下面我们再举一个数列中利用放缩法证明不等式的问题.例3已知正项数列{}满足(1)判断数列{}的单调性;(2)求证:分析:(1),即故数列{}为递增数列.(2)不妨先证再证:原解答中放缩技巧太强,下面给出另一种证法.当时,.易验证当n=1时,上式也成立.综上,故有成立.通过以上三例,我们发现通过递推公式,有的数列可以通过构造新数列的方法,构造出一个我们一个较熟悉的数列,从而求出通项公式,这也是一种化归能力的体现.有的数列题目虽不能求出通项公式,但我们可以研究其隐含的性质如单调性等
5、来解决问题.放缩法虽然技巧性较强,但多数均是一些常用的放缩手段.此类问题考查了学生的灵活性与分析问题及运用知识解决问题的能力.也正为此,这种类型的题目越来越受到高考命题者的青睐
此文档下载收益归作者所有