资源描述:
《人教A版数学必修三教案:§3.2.2(整数值)随机数的产生》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、备课大师:免费备课第一站!§3.2.2(整数值)随机数(randomnumbers)的产生一、教材分析产生随机数的方法有两种:(1)由试验产生的随机数:例如我们要产生1—25之间的随机整数,我们把25个大小形状等均相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌.然后从中摸出一个球,这个球上的数就是随机数.一般当需要的随机数个数不是太多时,可以用这种方法产生随机数.如果需要随机数的量很大,这种方法就不是很方便,因为速度太慢.(2)用计算器或计算机产生随机数:由于计算机或计算器产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类
2、似随机数的性质,但并不是真正的随机数,称为伪随机数.在随机模拟中,往往需要大量的随机数,这时会选择用计算机产生随机数.这部分内容是新增加的内容,是随机模拟中最简单、易操作的部分,所以要求每个学生会操作.具体教学时,教师可以在课堂上带着学生用计算器操作一遍,然后让学生模拟掷硬币的试验或掷骰子的试验,并统计试验的结果.根据试验结果,教师可以设计一些与上一章统计部分相联系的问题,通过知识的相互联系,可以帮助学生更好地理解概率的意义和一些统计思想.例如:①每个学生模拟掷一个硬币的试验20次,统计出现正面的频数与频率,并可用频率估计概率,在此基础上进一步提出问题:这个估计的精
3、度如何?误差大吗?②如果全班有50人,每人得到一个频率,那么有50个观测数据,计算这50个数据的平均数和标准差,并根据统计中的平均数和标准差的含义和计算的具体数值,解释这个模拟结果,通过这个过程,可以使学生进一步理解频率是概率的估计值,以及平均数和标准差的含义等.不同的计算器产生随机数的操作步骤可能不同,教科书中仅是以一种计算器为例给出产生随机数的步骤.教学中,可以让学生自己看计算器的说明书,按说明书的提示进行操作.很多软件都能产生随机数,教科书中以Excel软件为例,主要考虑到这个软件比较普遍,多数教师对它比较熟悉.教师在讲授这部分内容之前应该熟悉一下Excel软
4、件,特别是产生随机数的函数、画统计图的功能及对统计数据结果的处理功能.用随机模拟的方法模拟随机现象称为统计试验.这里必须明确随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能是不同的.二、教学目标1、知识与技能:(1)了解随机数的概念;(2)利用计算机产生随机数,并能直接统计出频数与频率。2、过程与方法:(1)通过对现实生活中具体的随机数问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。3、情感态度与价值观:通过数学与探究活动,体
5、会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:学会利用随机数实验来求简单事件的概率.教学难点:学会利用计算器、计算机求随机数的方法.四、课时安排1课时五、教学设计(一)导入新课思路1http://www.xiexingcun.com/http://www.eywedu.net/备课大师:免费备课第一站!复习上一节课的内容:(1)古典概型.我们将具有①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.(2)古典概型计算任何事件的概率计算公式:P
6、(A)=.本节课我们学习(整数值)随机数的产生,教师板书课题.思路2在第一节中,同学们做了大量重复试验,有的同学可能觉得这样做试验花费的时间太多了,那么,有没有其他方法可以代替试验呢?答案是肯定的,这就是我们将要学习的内容(整数值)随机数的产生.(二)推进新课、新知探究、提出问题(1)在掷一枚均匀的硬币的试验中,如果没有硬币,你会怎么办?(2)在掷一枚均匀的骰子的试验中,如果没有骰子,你会怎么办?(3)随机数的产生有几种方法,请予以说明.(4)用计算机或计算器(特别是TI图形计算器)如何产生随机数?活动:学生思考或讨论,并与同学交流活动感受,讨论可能出现的情况,师生
7、共同最后汇总方法、结果和感受.讨论结果:(1)我们可以用0表示反面朝上,1表示正面朝上,用计算器做模拟掷硬币试验.(2)我们可以分别用数字1、2、3、4、5、6表示出现“1点”“2点”“3点”“4点”“5点”和“6点”,用计算器做模拟掷骰子试验.(3)可以由试验产生随机数,也可用计算机或计算器来产生随机数.①由试验产生的随机数:例如我们要产生1—10之间的随机数,可以把大小形状均相同的十张纸片的背后分别标上:1,2,3,…,8,9,10,然后任意地抽出其中一张,这张纸上的数就是随机数.这种产生随机数的方法比较直观,不过当随机数的量比较大时,就不方便,因为速度太慢