数学华东师大版八年级上册边角边的判定

数学华东师大版八年级上册边角边的判定

ID:42344470

大小:150.50 KB

页数:8页

时间:2019-09-13

数学华东师大版八年级上册边角边的判定_第1页
数学华东师大版八年级上册边角边的判定_第2页
数学华东师大版八年级上册边角边的判定_第3页
数学华东师大版八年级上册边角边的判定_第4页
数学华东师大版八年级上册边角边的判定_第5页
资源描述:

《数学华东师大版八年级上册边角边的判定》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、课题:学习水平课堂教学目标教学要点(知识、能力、思想、情感)识记理解应用评价掌握熟练掌握知识性思想性1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.4.能运用“SAS”证明简单的三角形全等问题.√√√√√√教学重点三角形全等的条件(SAS)教学难点寻求三角形全等的条件.(SAS)教法探究式学法自学探究教学准备多媒体全等三角形的判定教学过程及时间教学内容及措施教师活动学生活动一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对

2、应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:△ABD≌△ACE,AB与AC是对应边;图(2)中:△ABC≌△AED,AD与AC是对应边.4.三角形全等的判定Ⅰ的内容是什么?认真回忆思考,积极回答教学过程及时间教学内容及措施教师活动学生活动二、导入新课1.三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是

3、否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB=∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1(2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)1、随老师的引导得出三角形全等的判定(2)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应

4、相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)2、按要求画图3、得出结论教学过程及时间教学内容及措施教师活动学生活动三、例题与练习1.填

5、空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).2、例1已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么

6、要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或AE=CF)?怎样证明呢?例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.1、(1)AC=CAAD∥BC(2)AB=AC,AD=AE,另外∠1=∠2可以推出∠DAB=∠EAC.2、自主证明3、独立完成教学过程及时间教学内容及措施教师活动学生活动四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.师生共同总结作

7、业A层次1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.B层次C层次教学反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。