资源描述:
《浙江省2017届中考数学一轮复习专题练习4数量和位置变化(2)浙教版》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、专题复习•数量和位置变化(2)班级姓名学号一.选择题1.在直和坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,-3)B.(・4,3)C.(0,・3)D.(0,3)2.将抛物线尸#・2屮3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.尸(x-1)2+4B.尸(x-4)2+4C.y=(jv+2)2+6D.y=(x-4)2+63.货年和小汽年同吋从甲地出发,以各口的速度匀速向乙地行驶,小汽布到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小
2、时,小汽车的速度为90千米/小时,则下图中能分别反映出货千、小汽车离乙地的距离y(T•米)与各自行驶时间f(小时)之间的函数图象是()八y(千米)h千米)2(千米)八4•如图,市煤气公司计划在地下修建•-个容积为10方的圆柱形煤气储存室,则储存室的底仍)的函数图彖大致是(5•如图,在直角坐标系中,有两点〃(6,3),〃(6,0),以原点。位似中心,相似比为寺在第一象限内把线段仞缩小后得到线段⑵则点。的坐标为()Ac”「->0DBxA.(2,1)B.(2,0)C.(3,3)D.(3,1)6.如图,在方格纸屮,UAB为一边作/ABP,使Z^i/ABC全等,
3、从只,咒,A,只四个点中找出符合条件的点只则点"冇()7.在下血的网格图中,每个小正方形的边长均为1,△/!%的三个顶点都是网格线的交点,已知〃,「两点的坐标分別为(-1,-1),(1,-2),将绕点C顺吋针旋转90°,贝IJ点力的对应点的坐标为()B■■<3・■■“Hl••Mt■■・<3■HfltHI■■■■■■A.(4,1)B.(4,・1)C・(5,1)D・(5,・1)8.如图是自行车骑行训练场地的一部分,半圆0的玄径加>100,在半圆弧上有一运动员C从〃点沿半圆周匀速运动到〃(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以和同的速度运动
4、到昇点停止.设运动时间为十,点〃到直线%的距离为d,则下列图象能大致刻画d与间的关系是()9.如图,已知正的边长为2,E,F,&分别是初,BC,以上的点,且A&B&CG,处EFG的面积为F,力上、的长为乳则y关于/的函数图象人致是()BZ7C10.如图,在平面直角坐标系中,AABC'由△ABC绕点P旋转得到,则点P的坐标A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)二•填空题11•在平而总角处标系中,点/的坐标是(2,-3),作点〃关于/轴的对称点得到点/T,再作点"关于y轴的对称点,得到点A…,则点右‘的坐标是(,).12.如图是根据某公园
5、的平面示意图建立的平面肓角坐标系,公园的入口位于坐标原点0,古塔位于点A(400,300),从古塔出发沿射线创方向前行300m是盆景园〃,从盆呆园〃向左转90°后直行400m到达梅花阁C,则点C的坐标是.13.已知函数/(x)=-,那么/(V2-l)=ox14.将正比例函数y=-6x的图象向上平移,则平移后所得图象对应的函数解析式可以是(写出一个即可).15.函数y=仮一1的白变量X的取值范I韦I是.16.已知抛物线y=x2-2x-3,若点户(-2,5)与点0关于该抛物线的对称轴对称,则点0的坐标是.17.某水库的水位在5小时内持续上涨,初始水位高度为6米
6、,水位以每小时0.3米的速度匀速上升,则水库的水位y与上涨时间兀Z间的函数关系式是.1&如果/(%)=kx,/(2)=-4,那么£=.三.解答题19.我们知道,函数y=d(x-加尸+n(心0,加〉0,n>0)的图像是由二次函数y=ax1的图像向右平移/〃个单位,再向上平移〃个单位得到.类似地,函数y=k+n伙h0,加>0,〃>0)的图像是由反比例函数y=—的图像向右平移仍个单位,x-mx再向上平移/?个单位得到,其对称屮心坐标为5,小.理解应用33函数y=—+1的图像可以山函数y=-的图像向右平移个单位,再x-1x向上平移个单位得到,具对称屮心坐标为・灵活
7、运用_4-4如图,在平面直角坐标系无0中,请根据所给的y=—的图像画出函数y=—?--2xx-2的图像,并根据该图像指出,当x在什么范围内变化时,y>-l?「iTiTiT甲iTiTir头际应用某老师対一•位学牛的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.3新知识学习后经过的时间为x,发现该牛的记忆存留量随x变化的函数关系为Vl=——;兀+4若在X=t(r^4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时Q间忽略不计),且复习后的记忆存留量随X变化的两数关系为”=亠・如果记忆存留量为x-a】时是复习的“最佳时机点”,H他第一
8、次复习是在“最佳时机点”进行的,那么当无为何2值吋,是他笫二次复习