9.3 反比例函数的应用(2)

9.3 反比例函数的应用(2)

ID:42134193

大小:699.50 KB

页数:19页

时间:2019-09-08

9.3 反比例函数的应用(2)_第1页
9.3 反比例函数的应用(2)_第2页
9.3 反比例函数的应用(2)_第3页
9.3 反比例函数的应用(2)_第4页
9.3 反比例函数的应用(2)_第5页
资源描述:

《9.3 反比例函数的应用(2)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、反比例函数的应用(2)挑战记忆反比例函数图象有哪些性质?反比例函数是由两支曲线组成,当K>0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K<0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.你吃过拉面吗?你知道在做拉面的过程中渗透着数学知识吗?(1)体积为20cm3的面团做成拉面,面条的总长度y与面条粗细(横截面积)s有怎样的函数关系?(2)某家面馆的师傅手艺精湛,他拉的面条粗1mm2,面条总长是多少?创设情景市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面

2、积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?探究1:解:(1)根据圆柱体的体积公式,我们有s×d=变形得即储存室的底面积S是其深度d的反比例函数.市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?把S=500代入,得解得d=

3、20如果把储存室的底面积定为500,施工时应向地下掘进20m深.(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?解:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.根据题意,把d=15代入,得解得S≈666.67当储存室的深为15m时,储存室的底面积应改为666.67才能满足需要.(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?解:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.3月踏青的季

4、节,我校组织八年级学生去武当山春游,从学校出发到山脚全程约为120千米(1)汽车的速度v与时间t有怎样的函数关系(2)原计划8点出发,11点到,但为了提前一个小时到达能参观南岩一个活动,平均车速应多快试一试P是S的反比例函数.某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.如果人和木板对湿地地面的压力合计为600N,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?(1)求p与S的函数关系式,画出函数的图象.

5、某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.如果人和木板对湿地地面的压力合计为600N,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?当S=0.2m2时,P=600/0.2=3000(Pa)当P≤6000时,S≥600/6000=0.1(m2)(3)如果要求压强不超过6000Pa,木板面积至少要多大?(2)当木板面积为0.2m2时.压强是多少?归纳实际问题反比例函数建立数学模型运用数学知识解决(2)d

6、=30(cm)练习如图,某玻璃器皿制造公司要制造一种容积为1升(1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?例题码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?根据装货速度×装货时间=货物的总量,可以求出轮船装载货物的总

7、量;再根据卸货速度=货物的总量÷卸货时间,得到v与t的函数式。分析Vt=30×8(1)设轮船上的货物总量为k吨,则根据已知条件有k=30×8=240所以v与t的函数式为(2)把t=5代入,得结果可以看出,如果全部货物恰好用5天卸完,则平均每天卸载48吨.若货物在不超过5天内卸完,则平均每天至少要卸货48吨.解:(1)已知某矩形的面积为20cm2,写出其长y与宽x之间的函数表达式。(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?考考你AyOBxMN超越自我:Ay

8、OBxMNCDAyOBxMNCD1、通过本节课的学习,你有哪些收获?小结2、利用反比例函数解决实际问题的关键:建立反比例函数模型.3、体会反比例函数是现实生活中的重要数学模型.认识数学在生活实

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。