资源描述:
《高三数学第二轮温习教案第8讲导数应用的题型与方法(一)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高三数学第二轮复习教案第8讲导数应用的题型与方法(一)一、考试内容导数的概念,导数的儿何意义,儿种常见函数的导数两个两数的和、差、积、商的导数,复合函数的导数,基本导数公式,利川导数研究函数的单调性和极值,函数的最大值和最小值二、考试要求(1)了解导数概念的某些实际背杲(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。(2)熟记基木导数公式(cf(加为有理数),sinx,cosx,ex,av,lnx,logwx的导数)。掌握两个函数四则运算的求导法则和复合函数的
2、求导法则,会求某些简单函数的导数。(3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数耍极值点两侧界号),会求一些实际问题(一般指单峰函数)的最大值和最小值。三、复习目标1.了解导数的概念,能利用导数定义求导数,掌握函数在一点处的导数的定义和导数的儿何意义,理解导函数的概念.了解曲线的切线的概念,在了解瞬时速度的棊础上抽象出变化率的概念。2.熟记基本导数公式(加为有理数),sinx,cosx,ev,av,lar,logx的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则
3、,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最人(小)值的问题,掌握导数的基本应用。1.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。2.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有力工貝。在高中阶段对于导数的学习,主要是以下儿个方面:1.导数的常规问题:(1)刻画函数
4、(比初等方法精确细微);(2)同儿何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于刃次多项式的导数问题属于较难类型。2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。4.曲线的切线在初屮学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的
5、切线的概念推广为一段曲线的切线,即直线和曲线冇惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当的.如图3—1中的曲线C是我们熟知的正弦曲线尸siru.直线厶与曲线C有惟一公共点M,但我们不能说直线厶与曲线C相切;而直线厶尽管与曲线C有不止一个公共点,我们还是说直线厶是Illi线C在点N处的切线.因此,对于一般的1111线,须重新寻求Illi线的切线的定义.所以课本利用割线的极限位置來定义了曲线的切线.(图3-1)1.瞬时速度在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书屮首先指出:运动物
6、体经过某一时刻(或某一位置)的速度叫做瞬时速度,然示从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明,物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段吋间运动的平均速度的极限来定义瞬吋速度。2.导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据。对导数的定义,我们应注意以下三点:(1)是口变量兀在心处的增量(或改变量).(2)导数定义屮还包含了可导或可微的概念,如杲△*->()时,乞有极限,那么函数Ary=f(x)在点兀()处可导或可微
7、,才能得到/(x)在点X。处的导数.(3)如果函数y=f(^)在点x()处可导,那么函数y=f(^)在点X。处连续(山连续函数定义可知).反之不一定成立,例如函数尸闪在点尸0处连续,但不可导。山导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行:(1)求函数的增量=f(x04-Ax)-/(x0);(2)求平均变化率型一心)+心)一念讥AxAr(3)取极限,得导数广(x0)=lim^o山->0Ax1.导数的几何意义函数y于(x)在点兀°处的导数,就是曲线尸&)在点P(x0,/(x0))处的切线的斜率.由此,可以
8、利用导数求曲线的切线方程.具体求法分两步:(1)求出函数y=f(x)在点X。处的导数,即曲线y=f(-V)在点PS。,/(")))处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为y-儿=广(兀o)d-兀。)特别地,如果曲线y=T(x)在点PCsJSo))处的切线平行于y轴,这时导数不存,根据切线