第8讲导数应用的题型与方法(4课时)

第8讲导数应用的题型与方法(4课时)

ID:19421445

大小:1.84 MB

页数:25页

时间:2018-10-02

第8讲导数应用的题型与方法(4课时)_第1页
第8讲导数应用的题型与方法(4课时)_第2页
第8讲导数应用的题型与方法(4课时)_第3页
第8讲导数应用的题型与方法(4课时)_第4页
第8讲导数应用的题型与方法(4课时)_第5页
资源描述:

《第8讲导数应用的题型与方法(4课时)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高三数学第二轮复习教案第8讲导数应用的题型与方法(4课时)一、考试内容导数的概念,导数的几何意义,几种常见函数的导数两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值二、考试要求⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。  ⑵熟记基本导数公式(c,x(m为有理数),sinx,cosx,e,a,lnx,logx的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。  ⑶了解可

2、导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。三、复习目标 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x(m为有理数),sinx,cosx,e,a,lnx,logx的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,

3、掌握导数的基本应用. 3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。  4.25了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技

4、巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。4.曲线的切线  在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当的.如图3—1中的曲线C是我们熟知的正弦曲线y=

5、sinx.直线与曲线C有惟一公共点M,但我们不能说直线与曲线C相切;而直线尽管与曲线C有不止一个公共点,我们还是说直线是曲线C在点N处的切线.因此,对于一般的曲线,须重新寻求曲线的切线的定义.所以课本利用割线的极限位置来定义了曲线的切线.  5.瞬时速度  25在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定

6、义瞬时速度.  6.导数的定义  导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据.  对导数的定义,我们应注意以下三点:  (1)△x是自变量x在处的增量(或改变量).  (2)导数定义中还包含了可导或可微的概念,如果△x→0时,有极限,那么函数y=f(x)在点处可导或可微,才能得到f(x)在点处的导数.  (3)如果函数y=f(x)在点处可导,那么函数y=f(x)在点处连续(由连续函数定义可知).反之不一定成立.例如函数y=

7、x

8、在点x=0处连续,但不可导.  由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进

9、行:  (1)求函数的增量;  (2)求平均变化率;  (3)取极限,得导数。  7.导数的几何意义  函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:  (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率;  (2)在已知切点坐标和切线斜率的条件下,求得切线方程为    特别地,如果曲线y=f(x)在点处的切线平行于y轴,这时导数不存,根据切线定义,可得切线方程为  8.和(或差)的导数25  上一节我们学习了常见函数的导数公式,那么对于函数的导数,又如何求呢?我

10、们不妨先利用导数的定义来

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。