什么是薛定谔方程

什么是薛定谔方程

ID:41941538

大小:43.50 KB

页数:10页

时间:2019-09-05

什么是薛定谔方程_第1页
什么是薛定谔方程_第2页
什么是薛定谔方程_第3页
什么是薛定谔方程_第4页
什么是薛定谔方程_第5页
资源描述:

《什么是薛定谔方程》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、什么是薛定铐方程MarianneFreiberger关键词:理论物理,数学方程下而是一个典型的教科书问题:你的车已经用完了汽汕,你要用多大的力才能把它加速到给定的速度?答案来自牛顿第二运动定律:F=ma.其中Q是加速度,F是力,加是质量。这个完美、直截了当、但也细微的定律可以描述各种运动,因此至少在理论上可以冋答一个物理学家可能要问的关于世界的几乎所有问题。真是可以吗?当人们第一次开始考虑最小尺度的世界时,例如电了绕原了核旋转,慢慢意识到爭情变得非常奇怪,爭实上,牛顿定律不再适用。为了描述这个微小的世界,你需要用到迟至二十世纪初方开始发展的量了力学理论。这个理论

2、的核心方程类似于经典力学中的牛顿第二定律,它被称为薛定谬方程。_」薛定谓方程是以欧文•薛定谓(1887-1961)的名字命名的,。波和粒子“在经典力学中,我们使用位置和动量来描述一个物理系统的状态,”剑桥大学的理论物理学家NAZTMBouatta解释道。例如,假设桌面上有一些运动着的台球,如果你知道了每个球在某个时刻7的位置和动量(即质量乘以速度),那么你就知道了该系统在时刻/的一切:这里的一切指的是运动的状态利运动得多快。我们会问:“如果我们知道一个系统的初始条件,即我们知道系统在时间70的状态,那么该系统的动态如何演变?牛顿第二定律可以帮助我们冋答此类问题。

3、在量子力学中,我们问了同样的问题,但得到的答复是棘手的,因为位置和动量不再是描述系统的合适变量。”问题的关键是,量子力学试图描述的对象及其行为并不总是像小小的台球那么简单。有时,最好把它们看成是波。“把光作为例子,牛顿除了他关于引力的工作,也对光学有兴趣,”Bouatta说。“根据牛顿,光由粒子所描述,但是,经过许多科学家的工作,其中包括由詹姆斯•克拉克•麦克斯韦的理论所导致的认识,人们发现,光确实可用波来刻画。”但在1905年,爱因斯坦认识到波动学说也并不完全正确。为了解释光电效应,你需要把光朿视为被爱因斯坦称为光子的粒子流。光子数•光的强度成正比,每个光子的

4、能量其频率/成正比:E=hf.这里/?=6.626068xl0-34加2饱心是一个令人难以置信的小数,称为普朗克常数,以物理学家马克斯•普朗克的名字命名,他在1900年关于黑体辐射的工作中已经猜到这个公式。“因此,我们面临这样的情况:描述光的正确方法是它有时为波,有时为粒子,”Bouatta说。双缝实验:最上面的图表示波经过双缝产生的干扰模式,中间是你期望看到的粒子发射通过双缝的图,底下那幅是实际粒子例如电子发射经过双缝的示意图:你得到期望的波干扰模式,但电子还是如同粒子的面貌达到。爱因斯坦的结果可以少一个古老的努力联系在一起,它开始于17世纪的克里斯蒂安•惠更

5、斯而在19世纪由威廉•汉密尔顿再次探索:将光的物理原理(这是关于波的)和力学(这是关于微粒的)统一起来。由于光自相矛盾行为的灵感刺激,年轻的法国物理学家路易•德布罗意在探索的征途中走出了戏剧性的一步:他设想不仅光而且物质受制于所谓的波粒二象性。物质的微小组成部分,例如电子,有时呈现粒子性,有时则呈现波动性。徳布罗意1920年代提出的思想并不基于实验的证据,而是由于爱因斯坦相对论所激起的理论考虑。但是实验依据将接踵而至。1920年代后期牵涉到晶体散射粒子的实验证实了电子的波动性。波粒二象性的最著名演示Z—是双孔实验。将电子(或像光子或中子那样的其他粒子)一次一个地

6、对着有两个小孔的屏幕打靶。屏幕后面有另一张屏幕,它能检测通过小孔的电子在屏幕上的位置。如果电子具有粒子行为,那么它们在小孔后面的两条直线旁边堆积。但检测屏幕时人们实际看到的是干涉模式:这是电子具有波动性的图像,每个波经过双孔后在屏幕另一面后传播开时自我干涉。然而在检测屏幕上电子如同你所期待的那样以粒子的面貌到达。这确实是一个非常不可思议的结果,但它重复了无数次-一我们必须接受世界就是这么运行的事实。薛定谭方程德布罗意提出的彻底新颖的图像需要新的物理。与粒了有关的波在数学上看像什么?爱因斯坦已经将光了的能量E与光的频率/联系在一起,后者又通过公式/与光的波长有关,

7、其中c为光速。运用相对论的结果,也可以将光了的能量与动量相联系。将所有这些结合起來就得到光了的波长2和动量pZ间的关系)i=h!p,其屮力述是普朗克常数。从这里继续走下去,德布罗意假设波长和动量的同样关系对任何粒子都成立。这个时候我们最好不要管粒子行为(如波的说法)到底意味着什么样的直觉性,而就跟着数学走吧。在经典力学里,波随着时间的演化,例如声波或水波,是由一个波动方程描述的。这是一个微分方程,其解是一个波函数,它给出波在任何时刻的形状(需要满足合适的边界条件)。例如,设想你有一个直线波沿着兀-轴方向的细绳传播开去,并在厂'-平面内振动。为了完全地描述波,我们

8、需要找到细绳上任一点X在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。