欢迎来到天天文库
浏览记录
ID:41921459
大小:348.00 KB
页数:13页
时间:2019-09-05
《2012年广东省汕头市中考数学试卷解析版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012年广东省汕头市中考数学试卷一.选择题(共8小题)1.(2011•河南)﹣5的绝对值是( ) A.5B.﹣5C.D.﹣考点:绝对值。分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得
2、﹣5
3、=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2012•广东)地球半径约为6400000米,用科学记数法表示为( ) A.0.64×107B.6.4×106C.64×105D.640×104考点:科学
4、记数法—表示较大的数。分析:科学记数法的形式为a×10n,其中1≤a<10,n为整数.解答:解:6400000=6.4×106.故选B.点评:此题考查用科学记数法表示较大的数,其规律为1≤
5、a
6、<10,n为比原数的整数位数小1的正整数.3.(2012•广东)数据8、8、6、5、6、1、6的众数是( ) A.1B.5C.6D.8考点:众数。分析:众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.解答:解:6出现的次数最多,故众数是6.故选C.点评:本题主要考查了众数的概念,注意众数是指一组
7、数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(2012•广东)如图所示几何体的主视图是( ) A.B.C.D.考点:简单组合体的三视图。分析:主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.135.
8、(2012•汕头)下列平面图形,既是中心对称图形,又是轴对称图形的是( ) A.等腰三角形B.正五边形C.平行四边形D.矩形考点:中心对称图形;轴对称图形。分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵等腰三角形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,故此选项错误;B、∵正五边形形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、平行四边形旋
9、转180°后能与原图形重合,此图形是中心对称图形,但不是轴对称图形,故此选项错误;D、∵矩形旋转180°后能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项正确.故选D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.6.(2012•汕头)下列运算正确的是( ) A.a+a=a2B.(﹣a3)2=a5C.3a•a2=a3D.(a)2=2a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。分析:根据合并同类项法则:只把系数相加,字母部分完全不
10、变;积的乘方:底数不变,指数相乘;单项式乘法法则:系数与系数相乘,同底数幂相乘,只在一个单项式里含有的字母连同它的指数作为积的一个因式,进行计算即可选出答案.解答:解:A、a+a=2a,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、3a•a2=3a3,故此选项错误;D、(a)2=2a2,故此选项正确;故选:D.点评:此题主要考查了合并同类项、积的乘方、单项式乘法,关键是熟练掌握各个运算的计算法则,不要混淆.7.(2012•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(
11、 ) A.5B.6C.11D.16考点:三角形三边关系。专题:探究型。分析:设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.解答:解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.点评:本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.8.(2012•汕头)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数
12、是( ) A.110°B.80°C.40°D.30°13考点:旋转的性质。分析:首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.解答:解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠
此文档下载收益归作者所有