欢迎来到天天文库
浏览记录
ID:41838217
大小:30.50 KB
页数:3页
时间:2019-09-03
《二元一次方程组资料说课稿资料》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《二元一次方程组》说课稿 各位评委老师们:大家下午好!今天我说课的内容是人教版初中数学七年级下册第八章第一节二元一次方程组。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识和理解。一、说教材分析1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握
2、解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。2.教学目标 知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。 能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。 情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。3.重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。难点:在实际生活中二元一次方程组的应用。二、教法现代教学理论认为,
3、在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采
4、用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。三、学法“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。四、教学过程新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,
5、本节课我主要安排以下教学环节:(1)复习旧知,温故知新篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。(2)创设情境,提出问题这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足
6、的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。这两个条件可以用方程x+y=10 2x+y=16表示:上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=10 2x+y=16像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知
7、欲望,产生了强劲的学习动力,此时我把学生带入下一环节。(3)发现问题,探求新知满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。xxyy上表中哪对x、y的值还满足方程②。一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归
8、纳。(4)分析思考,加深理解通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。(5)强化训练,巩固双基课堂练习:设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。练习2:已知下列三对数值: 哪一对是下列方程组的解?(设计意图:数学教学论指出,
此文档下载收益归作者所有