资源描述:
《专题二高考三角函数与平面向量命题动向》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、专題二當考三角函数与平面向量命题动向高考命题分析纵观近年各省的高考数学试题,出现了-•些富有时代气息的三角函数与平面向量考题,它们形式独特、背景鲜明、结构新颖,主要考查学生分析问题、解决问题的能力和处理交汇性问题的能力.在新课标高考试卷小一般有2〜4题,分值约占全卷的14%〜20%,因此,加强这些试题的命题动向研究,对指导高考复习无疑有十分重要的意义.现聚焦高考三角函数与平面向量试题,揭秘三角函数与平面向量高考命题动向,挖掘三角函数与平面向量常见的考点及其求解策略,希望能给考生带來帮助和启示.高考命题特点新课标高考涉及三
2、角函数与平而向量的考题可以说是精彩纷呈,奇花斗艳,英特点如下:(1)考小题,重基础:有关三角函数的小题其考查重点在于基础知识:解析式;图彖与图彖变换;两域(定义域、值域);四性(单调性、奇偶性、对称性、周期性);简单的三角变换(求值、化简及比较大小).有关向量的考查主要是向量的线性运算以及向量的数量积等知识.(2)考大题,难度明显降低:冇关三角函数的大题即解答题,通过公式变形转换來考杳思维能力的题目已经很少,而着重考查基础知识和基木技能与方法的题冃却在增加.大题屮的向量,主要是作为工具来考查的,多与三角、圆锥曲线相结合.
3、(3)考应用,融入三角形与解析几何Z中:既能考查解三角形、I员I锥曲线的知识与方法,又能考查运用三角公式进行恒等变换的技能,深受命题者的青睐.主要解法是充分利用三角形内角和定理、正、余弦定理、面积公式、向量夹角公式、向量平行与垂直的充要条件,向量的数量积等.(4)考综合,体现三角的工具作用:由丁•近几年高考试题突出能力立意,加强对知识性和应用性的考查,故常常在知识交汇点处命题,而三角知识是基础中的基础,故考查与立体几何、解析几何、导数等综合性问题时突出三角与向量的工貝性作用.高考动向透视动向考查三角函数的概念及同角三角函
4、数的基本关系高考对本部分内容的考查主要以小题的形式出现,即利用三角函数的定义、诱导公式及同角三角函数的关系进行求值、变形,或是利用三角函数的图象及其性质进行求值、求参数的值、求值域、求单调区间及图象判断等,而大题常常在综合性问题中涉及三角函数的定义、图象、诱导公式及同角三角函数的关系的应用等,在这类问题的求解中,常常使用的方法技巧是“平方法”,“齐次化切”等.(兀、1【示例1】k(2011福建)若炸〔0,寸,且sin'a+cos2么=才,则tana的值等于()•A・¥B.C.^/2D.羽i33解析由二倍角公式可得sin%
5、+1-2sii?a=才,即-sin2a=sin2a=又因为。€0,言,所以sin即a=扌,所以tana=tan扌=迈,故选D.答案D题卮反4本题考查了三角恒等变换中二倍角公式的灵活运用.动向考查三角函数的图象及其性质)三角函数的图象与性质主要包括:止弦(型)函数、余弦(型)函数、止切(型)函数的单调性、奇偶性、周期性、最值、图象的变换等五大块内容,在近年全国齐地的高考试卷中都有考查三角函数的图象与性质的试题,而H对三角函数的图象与性质的考查不但有客观题,还有主观题,客观题常以选择题的形式出现,往往结合集合、函数与导数考查
6、图象的相关性质;解答题主要在与三角恒等变换、不等式等知识点的交汇处命题,难度中等偏下.【示例2]►(2011-浙江)已知函数./(x)=/sing+0),x^R,/>0,0V°V务y=•/⑴的部分图象如图所示,P,0分别为该图象的最高点和最低点,点P的坐标为(1,/)•(1)求心)的最小正周期及(p的值;2兀⑵若点R的坐标为(1,0),"RQ=〒,求/的值.解(1)由题意得,T=¥=6.3(ti因为P(l,Ay^£y=Asr^x+(pJ的图彖上,所以sing+J=l.又因为0<卩<号,所以(/)=*.(2)设点Q的
7、坐标为(兀°,—/),兀7T3兀由题意可知尹o+g=f,得兀0=4,所以0(4,-A),如图,连接P0在厶PRQ由余弦定理得R^+RQ^PQ2cos上PRQ=—而庖—=解得A2=3.又/>0,所以/=羽./++/—(9+4才)_12A^9+A2—刁题卮反4本题主要考查三角函数的图象与性质、三角运算等基础知识.动向求单调区间高考对三角函数的单调性考查,常以小题形式呈现,有吋也会出现在大题的某,小问中,属中档题.对于形女口y=/sin(亦+卩)(或尹=/cos(ex+e)),Aco^0的单调区间的求法是:先考虑e的符号,再将
8、cox+(p视为一个整体,利用y=sinx的单调区间,整体运算,解出x的范围即可.【示例3】"2011•安徽)已知函数./U)=sin(2x+°),其中(p为实数,若/WW.(中对恒成立,且眉>/5),则沧)的单调递增区间是()・A.kn_j,刼+&(«WZ)B.7TkTl,&兀+㊁(£GZ)C.,71,D.刼—ki