欢迎来到天天文库
浏览记录
ID:34655565
大小:203.50 KB
页数:12页
时间:2019-03-08
《专题二全国高考三角函数与平面向量命题动向》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、专题二 高考三角函数与平面向量命题动向高考命题分析纵观近年各省的高考数学试题,出现了一些富有时代气息的三角函数与平面向量考题,它们形式独特、背景鲜明、结构新颖,主要考查学生分析问题、解决问题的能力和处理交汇性问题的能力.在新课标高考试卷中一般有2~4题,分值约占全卷的14%~20%,因此,加强这些试题的命题动向研究,对指导高考复习无疑有十分重要的意义.现聚焦高考三角函数与平面向量试题,揭秘三角函数与平面向量高考命题动向,挖掘三角函数与平面向量常见的考点及其求解策略,希望能给考生带来帮助和启示.矚
2、慫润厲钐瘗睞枥庑赖。高考命题特点新课标高考涉及三角函数与平面向量的考题可以说是精彩纷呈,奇花斗艳,其特点如下:(1)考小题,重基础:有关三角函数的小题其考查重点在于基础知识:解析式;图象与图象变换;两域(定义域、值域);四性(单调性、奇偶性、对称性、周期性);简单的三角变换(求值、化简及比较大小).有关向量的考查主要是向量的线性运算以及向量的数量积等知识.聞創沟燴鐺險爱氇谴净。(2)考大题,难度明显降低:有关三角函数的大题即解答题,通过公式变形转换来考查思维能力的题目已经很少,而着重考查基础知识
3、和基本技能与方法的题目却在增加.大题中的向量,主要是作为工具来考查的,多与三角、圆锥曲线相结合.残骛楼諍锩瀨濟溆塹籟。(3)考应用,融入三角形与解析几何之中:既能考查解三角形、圆锥曲线的知识与方法,又能考查运用三角公式进行恒等变换的技能,深受命题者的青睐.主要解法是充分利用三角形内角和定理、正、余弦定理、面积公式、向量夹角公式、向量平行与垂直的充要条件,向量的数量积等.酽锕极額閉镇桧猪訣锥。(4)考综合,体现三角的工具作用:由于近几年高考试题突出能力立意,加强对知识性和应用性的考查,故常常在知识
4、交汇点处命题,而三角知识是基础中的基础,故考查与立体几何、解析几何、导数等综合性问题时突出三角与向量的工具性作用.彈贸摄尔霁毙攬砖卤庑。高考动向透视考查三角函数的概念及同角三角函数的基本关系高考对本部分内容的考查主要以小题的形式出现,即利用三角函数的定义、诱导公式及同角三角函数的关系进行求值、变形,或是利用三角函数的图象及其性质进行求值、求参数的值、求值域、求单调区间及图象判断等,而大题常常在综合性问题中涉及三角函数的定义、图象、诱导公式及同角三角函数的关系的应用等,在这类问题的求解中,常常使用
5、的方法技巧是“平方法”,“齐次化切”等.謀荞抟箧飆鐸怼类蒋薔。【示例1】►(2011·福建)若α∈,且sin2α+cos2α=,则tanα的值等于厦礴恳蹒骈時盡继價骚。( ).A.B.C.D.茕桢广鳓鯡选块网羈泪。解析 由二倍角公式可得sin2α+1-2sin2α=,即-sin2α=-,sin2α=,又因为α∈,所以sinα=,即α=,所以tanα=tan=,故选D.鹅娅尽損鹌惨歷茏鴛賴。答案 D本题考查了三角恒等变换中二倍角公式的灵活运用.考查三角函数的图象及其性质)三角函数的图象与性质主要
6、包括:正弦(型)函数、余弦(型)函数、正切(型)函数的单调性、奇偶性、周期性、最值、图象的变换等五大块内容,在近年全国各地的高考试卷中都有考查三角函数的图象与性质的试题,而且对三角函数的图象与性质的考查不但有客观题,还有主观题,客观题常以选择题的形式出现,往往结合集合、函数与导数考查图象的相关性质;解答题主要在与三角恒等变换、不等式等知识点的交汇处命题,难度中等偏下.籟丛妈羥为贍偾蛏练淨。【示例2】►(2011·浙江)已知函数f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)預頌圣鉉儐歲
7、龈讶骅籴。的部分图象如图所示,P,Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(1)求f(x)的最小正周期及φ的值;(2)若点R的坐标为(1,0),∠PRQ=,求A的值.解 (1)由题意得,T==6.因为P(1,A)在y=Asin的图象上,渗釤呛俨匀谔鱉调硯錦。所以sin=1.铙誅卧泻噦圣骋贶頂廡。又因为0<φ<,所以φ=.(2)设点Q的坐标为(x0,-A),由题意可知x0+=,得x0=4,所以Q(4,-A),如图,连接PQ,在△PRQ中,∠PRQ=,由余弦定理得cos∠PRQ===
8、-,解得A2=3.又A>0,所以A=.擁締凤袜备訊顎轮烂蔷。本题主要考查三角函数的图象与性质、三角运算等基础知识.求单调区间高考对三角函数的单调性考查,常以小题形式呈现,有时也会出现在大题的某一小问中,属中档题.对于形如y=Asin(ωx+φ)(或y=Acos(ωx+φ)),Aω≠0的单调区间的求法是:先考虑A,ω的符号,再将ωx+φ视为一个整体,利用y=sinx的单调区间,整体运算,解出x的范围即可.贓熱俣阃歲匱阊邺镓騷。【示例3】►(2011·安徽)已知函数f(x)=sin(2x+φ),其中
此文档下载收益归作者所有