欢迎来到天天文库
浏览记录
ID:30546856
大小:115.00 KB
页数:9页
时间:2018-12-31
《高考三角函数与平面向量命题动向》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、高考三角函数与平面向量命题动向 一、高考命题分析 纵观近年各省的高考数学试题,出现了一些富有时代气息的三角函数与平面向量考题,它们形式独特、背景鲜明、结构新颖,主要考查学生分析问题、解决问题的能力和处理交汇性问题的能力.在新课标高考试卷中一般有2~4题,分值约占全卷的14%~20%,因此,加强这些试题的命题动向研究,对指导高考复习无疑有十分重要的意义.现聚焦高考三角函数与平面向量试题,揭秘三角函数与平面向量高考命题动向,挖掘三角函数与平面向量常见的考点及其求解策略,希望能给考生带来帮助和启示. 二、命题特点 新课标高考涉及三角函数与平面向量的考题可以说是精彩纷呈,奇花斗艳,其
2、特点如下: (1)考小题,重基础:有关三角函数的小题,其考查重点在于基础知识:解析式;图象与图象变换;两域(定义域、值域);四性(单调性、奇偶性、对称性、周期性);简单的三角变换(求值、化简及比较大小).有关向量的考查主要是向量的线性运算以及向量的数量积等知识. (2)考大题,难度明显降低:有关三角函数的大题即解答题,通过公式变形转换来考查思维能力的题目已经很少,而着重考查基础知识和基本技能与方法的题目却在增加.大题中的向量,主要是作为工具来考查的,多与三角、圆锥曲线相结合.9 (3)考应用,融入三角形与解析几何之中:既能考查解三角形、圆锥曲线的知识与方法,又能考查运用三角公式
3、进行恒等变换的技能,深受命题者的青睐.主要解法是充分利用三角形内角和定理、正、余弦定理、面积公式、向量夹角公式、向量平行与垂直的充要条件、向量的数量积等. (4)考综合,体现三角的工具作用:由于近几年高考试题突出能力立意,加强对知识性和应用性的考查,故常常在知识交汇点处命题,而三角知识是基础中的基础,故考查与立体几何、解析几何、导数等综合性问题时突出三角与向量的工具性作用. 三、高考动向透视 考向1考查三角函数的概念及同角三角函数的基本关系 高考对本部分内容的考查主要以小题的形式出现,即利用三角函数的定义、诱导公式及同角三角函数的关系进行求值、变形,或是利用三角函数的图象及其
4、性质进行求值、求参数的值、求值域、求单调区间及图象判断等,而大题常常在综合性问题中涉及三角函数的定义、图象、诱导公式及同角三角函数的关系的应用等,在这类问题的求解中,常常使用的方法技巧是“平方法”,“齐次化切”等. 例1(2012年高真题全国卷理7)已知α为第二象限角,sinα+cosα=33,则cos2α=. 解析:因为sinα+cosα=33所以两边平方得1+2sinαcosα=13,所以2sinαcosα=-23<0, 因为已知α为第二象限角,所以sinα>0,cosα<0 sinα-cosα=1-2sinαcosα=1+23=53=153,所以9 cos2α=cos
5、2α-sin2α=(cosα-sinα)(cosα+sinα)=-153×33=-53. 考向2考查三角函数的图象及其性质 三角函数的图象与性质主要包括:正弦(型)函数、余弦(型)函数、正切(型)函数的单调性、奇偶性、周期性、最值、图象的变换等内容,在近年全国各地的高考试卷中都有考查三角函数的图象与性质的试题,而且对三角函数的图象与性质的考查不但有客观题,还有主观题,客观题常以选择题的形式出现,往往结合集合、函数与导数考查图象的相关性质;解答题主要在与三角恒等变换、不等式等知识点的交汇处命题,难度中等偏下. 例2(2012年高考陕西理16)函数f(x)=Asin(ωx-π6)+
6、1(A>0,ω>0)的最大值为3,其图像相邻两条对称轴之间的距离为π2. (1)求函数f(x)的解析式; (2)设α∈(0,π2),则f(α2)=2,求α的值. 解析:(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2, ∵函数图像的相邻两条对称轴之间的距离为π2,∴最小正周期T=π,∴ω=2, 故所求函数f(x)的解析式为y=2sin(2x-π6)+1. (2)∵f(α2)=2sin(α-π6)+1=2,即sin(α-π6)=12, ∵α∈(0,π2),∴-π6<α-π6<π3,∴α-π6=π6,故α=π3. 考向3单调区间9 高考对三角函数的单调性考查,常
7、以小题形式呈现,有时也会出现在大题的某一小问中,属中档题.对于形如y=Asin(ωx+φ)(或y=Acos(ωx+φ)),Aω≠0的单调区间的求法是:先考虑A,ω的符号,再将ωx+φ视为一个整体,利用y=sinx的单调区间,整体运算,解出x的范围即可. 例3(2012年高考课标全国卷)已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)上单调递减,则ω的取值范围是. A.[12,54]B.[12,34] C.(0,12]D.(0,2] 解析
此文档下载收益归作者所有