推理与证明章末复习课件

推理与证明章末复习课件

ID:41529355

大小:605.06 KB

页数:45页

时间:2019-08-27

推理与证明章末复习课件_第1页
推理与证明章末复习课件_第2页
推理与证明章末复习课件_第3页
推理与证明章末复习课件_第4页
推理与证明章末复习课件_第5页
资源描述:

《推理与证明章末复习课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、本章归纳整合知识网络要点归纳1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明

2、方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.5.归纳、猜想、证明探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问

3、题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.专题一 归纳推理和类比推理归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方

4、法进行探索、猜想,最后用逻辑推理方法进行验证.【例1】如图所示,由正整数排成的三角形数表,第n行首尾两数均为n,记第n(n>1)行第2个数为f(n),根据数表中上下两行的数据关系可以得到递推关系________,并通过有关求解可以得到通项f(n)=________.【例2】自然数按下表的规律排列则上起第2007行,左起第2008列的数为().A.20072B.20082C.2006×2007D.2007×2008解析经观察可得这个自然数表的排列特点:①第一列的每个数都是完全平方数,并且恰好等于它所在行数的平方,即

5、第n行的第1个数为n2;②第一行第n个数为(n-1)2+1;③第n行从第1个数至第n个数依次递减1;④第n列从第1个数至第n个数依次递增1.故上起第2007行,左起第2008列的数,应是第2008列的第2007个数,即为[(2008-1)2+1]+2006=2007×2008.答案D专题二 直接证明由近三年的高考题可以看出,直接证明的考查中,各种题型均有体现,尤其是解答题,几年来一直是考查证明方法的热点与重点.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度

6、细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法结合起来使用.【例5】如图,在四面体BACD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.证明(1)要证直线EF∥平面ACD,只需证EF∥AD且EF⊄平面ACD.因为E,F分别是AB,BD的中点,所以EF是△ABD的中位线,所以EF∥AD,

7、所以直线EF∥平面ACD.专题三 反证法如果一个命题的结论难以直接证明时,可以考虑反证法.通过反设已知条件,经过逻辑推理,得出矛盾,从而肯定原结论成立.反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常体现,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性、唯一性命题;至多、至少型问题;几何问题.【例6】如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB、DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DC

8、EF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.图(1)图(2)(2)证明假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN,∵两正方形不共面,∴AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,∴AB∥EN.又AB∥CD∥EF,∴EN∥EF,这与EN∩EF=E矛盾,故

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。