final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise

final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise

ID:41326778

大小:206.21 KB

页数:25页

时间:2019-08-22

final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise_第1页
final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise_第2页
final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise_第3页
final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise_第4页
final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise_第5页
资源描述:

《final presA Density basedalgorithm for Discovering Clusters in Large Spatial Databases with Noise》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ADensitybasedalgorithmforDiscoveringClustersinLargeSpatialDatabaseswithNoisebySreeLakshmiPeriOutlines•Problemdescription.•Contributions.•Keyconceptsbehindthepaper.•Densitybasednotionofclusters.•IntroductiontoDBSCAN.•Outlineofthealgorithm.•PerformanceEvaluation.•Results.•Conclusion.•FutureWork

2、.•IfIrewritethepaper.•Reference.ProblemDescriptionApplicationsoflargespatialdatabasesrisessomerequirementsforclusteringalgorithmssuchas:DomainknowledgetodeterminetheinputparametersDiscoveryofclusterswitharbitraryshapeandGoodefficiencyonlargedatabasesetsExistingalgorithmscan’tgiveasolutionforc

3、ombinationfortheserequirements.Henceanewapproachisrequired.Contributions•Effectivelydiscoversclustersofarbitraryshape.•Canbeusedforlargespatialdatabases.•Discoversnoiseandhandlesiteffectively.KeyConceptsbehindthepaper:Clustering:Clusteringistheclassificationofobjectsintodifferentgroups,ormore

4、precisely,thepartitioningofadatasetintosubsets(clusters),sothatthedataineachsubset(ideally)sharesomecommontrait.Itisatechniqueusedindatamining.Clusteringalgorithms:Therearetwokindsofclusteringalgorithms.•Hierarchicalclusteringproceedssuccessivelybyeithermergingsmallerclustersintolargerones,or

5、bysplittinglargerclusters.•Partitionalclusteringattemptstodirectlydecomposethedatasetintoasetofdisjointclusters.KeyConcepts(Contd.)Densitybasedapproach:Clustersareregardedasregionsinthedataspaceinwhichtheobjectsaredense,andwhichareseparatedbyregionsoflowobjectdensity(noise).Theseregionsmayhav

6、eanarbitraryshapeandthepointsinsidearegionmaybearbitrarilydistributed.DensitybasednotionofclustersForanycluster,wehave:•Acentralpoint(p)•Adistancemetricfromthepoint(Eps)•Minimumnumberofpointswithinthespecifieddistancemetric(MinPts)Foragivenpoint‘p’,thepointscontainedwithinthedistancemetric(Ep

7、s)istermedasEps–neighborhoodofprepresentedasNEps(p)KeyideaEverypointinaclusterhasneighborhoodofpointsforagivenradius.Itshouldcontainaminimumnumberofpointsinthatregioni.e.,thedensityintheneighborhoodshouldexceedsomethreshold.Theshapeofthisneig

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。