a density based algorithm for discovering clusters in large spatial databsdes with noise

a density based algorithm for discovering clusters in large spatial databsdes with noise

ID:40354483

大小:52.77 KB

页数:6页

时间:2019-07-31

a density based algorithm for discovering clusters in large spatial databsdes with noise _第1页
a density based algorithm for discovering clusters in large spatial databsdes with noise _第2页
a density based algorithm for discovering clusters in large spatial databsdes with noise _第3页
a density based algorithm for discovering clusters in large spatial databsdes with noise _第4页
a density based algorithm for discovering clusters in large spatial databsdes with noise _第5页
资源描述:

《a density based algorithm for discovering clusters in large spatial databsdes with noise 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PublishedinProceedingsof2ndInternationalConferenceonKnowledgeDiscoveryandDataMining(KDD-96)ADensity-BasedAlgorithmforDiscoveringClustersinLargeSpatialDatabaseswithNoiseMartinEster,Hans-PeterKriegel,JörgSander,XiaoweiXuInstituteforComputerScience,Univer

2、sityofMunichOettingenstr.67,D-80538München,Germany{ester

3、kriegel

4、sander

5、xwxu}@informatik.uni-muenchen.deAbstractareoftennotknowninadvancewhendealingwithlargeClusteringalgorithmsareattractiveforthetaskofclassiden-databases.tificationinspatialdatabases.Ho

6、wever,theapplicationto(2)Discoveryofclusterswitharbitraryshape,becausethelargespatialdatabasesrisesthefollowingrequirementsforshapeofclustersinspatialdatabasesmaybespherical,clusteringalgorithms:minimalrequirementsofdomaindrawn-out,linear,elongatedetc.

7、knowledgetodeterminetheinputparameters,discoveryof(3)Goodefficiencyonlargedatabases,i.e.ondatabasesofclusterswitharbitraryshapeandgoodefficiencyonlargeda-significantlymorethanjustafewthousandobjects.tabases.Thewell-knownclusteringalgorithmsoffernosolu-tio

8、ntothecombinationoftheserequirements.Inthispaper,Thewell-knownclusteringalgorithmsoffernosolutiontowepresentthenewclusteringalgorithmDBSCANrelyingonthecombinationoftheserequirements.Inthispaper,weadensity-basednotionofclusterswhichisdesignedtodis-prese

9、ntthenewclusteringalgorithmDBSCAN.Itrequirescoverclustersofarbitraryshape.DBSCANrequiresonlyoneonlyoneinputparameterandsupportstheuserindetermin-inputparameterandsupportstheuserindetermininganap-inganappropriatevalueforit.Itdiscoversclustersofarbi-prop

10、riatevalueforit.Weperformedanexperimentalevalua-traryshape.Finally,DBSCANisefficientevenforlargespa-tionoftheeffectivenessandefficiencyofDBSCANusingtialdatabases.Therestofthepaperisorganizedasfollows.syntheticdataandrealdataoftheSEQUOIA2000bench-Wediscus

11、sclusteringalgorithmsinsection2evaluatingmark.Theresultsofourexperimentsdemonstratethat(1)DBSCANissignificantlymoreeffectiveindiscoveringclus-themaccordingtotheaboverequirements.Insection3,wetersofarbitraryshapethanthewell-knownalgorithm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。