Summarization and Matching of Density-Based Clusters in Streaming Environments

Summarization and Matching of Density-Based Clusters in Streaming Environments

ID:40355034

大小:870.36 KB

页数:12页

时间:2019-07-31

Summarization and Matching of Density-Based Clusters in Streaming Environments _第1页
Summarization and Matching of Density-Based Clusters in Streaming Environments _第2页
Summarization and Matching of Density-Based Clusters in Streaming Environments _第3页
Summarization and Matching of Density-Based Clusters in Streaming Environments _第4页
Summarization and Matching of Density-Based Clusters in Streaming Environments _第5页
资源描述:

《Summarization and Matching of Density-Based Clusters in Streaming Environments 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SummarizationandMatchingofDensity•BasedClustersin∗StreamingEnvironments†DiYangElkeA.RundensteinerMatthewO.WardOracleCorporationWorcesterPolytechnicInstituteWorcesterPolytechnicInstitute1OracleDrive100InstituteRoad100InstituteRoadNashua,NH,USAWorcester,MA,USAWorcester,MA,USAdi.yang@or

2、acle.comrundenst@cs.wpi.edumatt@cs.wpi.eduABSTRACTpatternminingsystemdoesnotonlyneedtobeequippedwithhighlyefficientpatternextractionalgorithms,butmoreDensity-basedclusterminingisknowntoserveabroadrangeimportantly,itmustalsoprovideeffectivepatternanalysisofapplicationsrangingfromstocktra

3、deanalysistomovingsupport,asmotivatedbelow:objectmonitoring.Althoughmethodsforefficientextrac-1)Patternfeatureabstraction.Thekeyfeaturesoftionofdensity-basedclustershavebeenstudiedinthelit-detectedpatternsmaybecomplexandthusmaynotbeerature,theproblemofsummarizingandmatchingofsucheasily

4、comprehensibleforhumananalystswithoutanalyticalclusterswitharbitraryshapesandcomplexclusterstruc-assistance.Forexample,inreal-timetrafficmonitoring,aturesremainsunsolved.Therefore,thegoalofourworkisclusterrepresentingacongestionareainthetrafficofBeijingtoextendthestate-of-artofdensity-ba

5、sedclustermininginmaybecomposedof10Korevenmorevehiclesandmaystreamsfromclusterextractiononlytonowalsosupport2spreadtoover10km.Bysimplylookingattheinformationanalysisandmanagementoftheextractedclusters.Ouraboutindividualclustermembers(vehicles),suchastheirworksolvesthreemajortechnical

6、challenges.First,wepro-positionsandmovingspeed,ananalystmaynotbeabletoposeanovelmulti-resolutionclustersummarizationmethod,identifythekeyfeaturesofthisclusterinrealtime,suchascalledSkeletalGridSummarization(SGS),whichcaptureswhereisthekeybottleneckcausingthecongestion.thekeyfeatureso

7、fdensity-basedclusters,coveringboth2)Patterncompression.Somepatternsneedtobetheirexternalshapeandinternalclusterstructures.Second,keptforlong-termanalysis,yetkeepingthefullrepresen-inordertosummarizetheextractedclustersinreal-time,wetationofthecomplexpatternstendstobeimpracticalinpre

8、sentanintegr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。