2019版中考数学复习 第18课时 函数的综合应用

ID:41160321

大小:68.00 KB

页数:3页

时间:2019-08-17

2019版中考数学复习 第18课时 函数的综合应用_第1页
2019版中考数学复习 第18课时 函数的综合应用_第2页
2019版中考数学复习 第18课时 函数的综合应用_第3页
资源描述:

《2019版中考数学复习 第18课时 函数的综合应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019版中考数学复习第18课时函数的综合应用【课前展练】1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t;B.Q=20-2t;C.t=0.2Q;D.t=20—0.2Q2.幸福村办工厂,今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该工厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减小B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平C.l月至3月每月生产总量逐月增加,4、

2、5两月均停止生产D.l月至3月每月生产总量不变,4、5两月均停止生产3.某商人将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销价提高.4.为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后y与x成反比例如图所示.现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息填空:⑴药物燃烧

3、时,y关于x的函数关系式为_______,自变量x的取值范围是_________;⑵药物燃烧后y关于x的函数关系式为___________⑶当室内空气中每立方米的含药量为3毫克时消毒才有效,有效时间为分钟【考点梳理】1.解决函数应用性问题的思路面→点→线。首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。如此将应用性问题转化为纯数学问题。2.解决函数应用性问题的步骤(1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把实际问

4、题的本质抽象转化为数学问题。(2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问题,最后检验所得的解,写出实际问题的结论。(注意:①在求解过程和结果都必须符合实际问题的要求;②数量单位要统一。)3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。求该目标函数的最值,但要注意:①变量的取值范围;②求最值时,宜用配方法。n(日)P(件)011031【典型例题】【例1】(孝感xx)五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件

5、,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)写出P关于n的函数关系式P=(注明n的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?(3)该品牌衬衣本月共销售了件.【例2】为提醒人们节约用水,及时修好漏水的水龙头,两名同学分别做了水龙头漏水实验,他们

6、用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):时间t(秒)10203040506070漏出的水量V(毫升)25811141720(1)在图1的坐标系中描出上表中数据对应的点;(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?(3)按此漏水速度,一小时会漏水千克(精确到0.1千克).实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?【例3】在一次数学活动课上,老师出了

7、一道题:(1)解方程x2-2x-3=0.巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法)。接着,老师请大家用自己熟悉的方法解第二道题:(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数).①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);②若m≠0时,设此函数的图象与x轴的另一个交点为点B,当△ABC为锐角三角

8、形时,求m的取值范围;当△ABC为钝角三角形时,观察图象,直接写出m的取值范围.请你也用自己熟悉的方法解上述三道题.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《2019版中考数学复习 第18课时 函数的综合应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019版中考数学复习第18课时函数的综合应用【课前展练】1.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.2t;B.Q=20-2t;C.t=0.2Q;D.t=20—0.2Q2.幸福村办工厂,今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该工厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减小B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平C.l月至3月每月生产总量逐月增加,4、

2、5两月均停止生产D.l月至3月每月生产总量不变,4、5两月均停止生产3.某商人将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销价提高.4.为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后y与x成反比例如图所示.现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息填空:⑴药物燃烧

3、时,y关于x的函数关系式为_______,自变量x的取值范围是_________;⑵药物燃烧后y关于x的函数关系式为___________⑶当室内空气中每立方米的含药量为3毫克时消毒才有效,有效时间为分钟【考点梳理】1.解决函数应用性问题的思路面→点→线。首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。如此将应用性问题转化为纯数学问题。2.解决函数应用性问题的步骤(1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把实际问

4、题的本质抽象转化为数学问题。(2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问题,最后检验所得的解,写出实际问题的结论。(注意:①在求解过程和结果都必须符合实际问题的要求;②数量单位要统一。)3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。求该目标函数的最值,但要注意:①变量的取值范围;②求最值时,宜用配方法。n(日)P(件)011031【典型例题】【例1】(孝感xx)五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件

5、,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)写出P关于n的函数关系式P=(注明n的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?(3)该品牌衬衣本月共销售了件.【例2】为提醒人们节约用水,及时修好漏水的水龙头,两名同学分别做了水龙头漏水实验,他们

6、用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):时间t(秒)10203040506070漏出的水量V(毫升)25811141720(1)在图1的坐标系中描出上表中数据对应的点;(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?(3)按此漏水速度,一小时会漏水千克(精确到0.1千克).实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?【例3】在一次数学活动课上,老师出了

7、一道题:(1)解方程x2-2x-3=0.巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法)。接着,老师请大家用自己熟悉的方法解第二道题:(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数).①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);②若m≠0时,设此函数的图象与x轴的另一个交点为点B,当△ABC为锐角三角

8、形时,求m的取值范围;当△ABC为钝角三角形时,观察图象,直接写出m的取值范围.请你也用自己熟悉的方法解上述三道题.

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭