资源描述:
《Barry Mazur - What is a Motive》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、?WHATIS...aMotive?BarryMazurHowmuchofthealgebraictopologyofacon-amoreintricatesetuptodealwith:foronething,nectedfinitesimplicialcomplexXiscapturedbywedon’tevenhaveacohomologytheorywithco-itsone-dimensionalcohomology?Specifically,howefficientsinZforvarietiesoverafieldkunless
2、wemuchdoyouknowaboutXwhenyouknowprovideahomomorphismk→C,sothatwecanH1(X,Z)alone?formthetopologicalspaceofcomplexpointsonFora(nearlytautological)answer,putGX:=ourvarietyandcomputethecohomologygroupsthecompact,connectedabelianLiegroupofthattopologicalspace.Oneperplexityhereis
3、(i.e.,productofcircles)whichisthePontrjaginthatthiscohomologyconstructionmay(andindualofthefreeabeliangroupH1(X,Z).Nowgeneral,does!)dependupontheimbeddingk→C.H1(GX,Z)iscanonicallyisomorphictoH1(X,Z)=And,ofcourse,therearefieldsknotadmittingHom(GX,R/Z)andthereisacanonicalhomo
4、topyembeddingsintoC.classofmappingsIncompensation,thereisaprofusionofdiffer-X−→GXentcohomologyfunctorsbeyondtheonescomingfromclassicalalgebraictopologyviaimbeddingsthatinducestheidentitymappingonH1.k→C.SomeofthesetheoriescomedependentTheanswer:weknowwhateverinformationcanup
5、onthespecificgroundfieldk,withtheirspecificbereadofffromGXandareignorantofanythingringsofcoefficients,andwithglobalrequirementsthatgetslostintheprojectionX→GX.onthevarietiesforwhichtheyaredefined.SomeThetheoryofEilenberg-MacLanespacesofferscomewiththeirownparticularattendan
6、tstructureusasomewhatanalogousanalysisofwhatweknowandwiththeirrelationstoalltheothercohomol-anddon’tknowaboutX,whenweequipourselvesogytheories:Hodgecohomology,algebraicdeRhamwithn-dimensionalcohomology,foranyspecificcohomology,crystallinecohomology,theétale-adicn,withspecif
7、iccoefficients.cohomologytheoriesforeachprimenumber,...Ifwerepeatourrhetoricalquestioninthecon-Istheresomesystematicandnaturalwayoftextofalgebraicgeometry,wherethestructureisencapsulatingallthisinformationaboutthesomewhatricher,canwehopeforasimilardis-n-dimensionalcohomolog
8、yofprojectivesmoothcussion?varietiesV(evenjustforn=1)?(ThetraditionInalgebraictopo