资源描述:
《高数9-1二重积分概念》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二、最值应用问题函数f在闭域上连续函数f在闭域上可达到最值最值可疑点驻点边界上的最值点特别,当区域内部最值存在,且只有一个极值点P时,为极小值为最小值(大)(大)依据例3.解:设水箱长,宽分别为x,ym,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水问当长、宽、高各取怎样的尺寸时,才能使用料最省?因此可断定此唯一驻点就是最小值点.即当长、宽均为高为时,水箱所用材料最省.例3.某厂要用铁板做一个体积为2的有盖长方体水问当长、宽、高各取怎样的尺寸时,才能使用料最省
2、?无条件极值:对自变量只有定义域限制三、条件极值条件极值的求法:方法1代入法.求一元函数的无条件极值问题对自变量除定义域限制外,还有其它条件限制例如,转化方法2拉格朗日乘数法.如方法1所述,则问题等价于一元函数可确定隐函数的极值问题,极值点必满足设记例如,故故有引入辅助函数辅助函数F称为拉格朗日(Lagrange)函数.利用拉格极值点必满足则极值点满足:朗日函数求极值的方法称为拉格朗日乘数法.推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.设解方程组可得到条件极值的可疑点.例如,求函数下的极值.在条件例5.要设计一个容
3、量为则问题为求x,y,令解方程组解:设x,y,z分别表示长、宽、高,下水箱表面积最小.z使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱,试问得唯一驻点由题意可知合理的设计是存在的,长、宽为高的2倍时,所用材料最省.因此,当高为例6:已知平面上两定点A(1,3),B(4,2),试在椭圆圆周上求一点C,使△ABC面积S△最大.解答提示:设C点坐标为(x,y),则设拉格朗日函数解方程组得驻点对应面积而比较可知,点C与E重合时,三角形面积最大.3.求旋转抛物面与平面之间的最短距离.解:设为抛物面上任一点,则P的距离为问题
4、归结为约束条件:目标函数:作拉氏函数到平面令解此方程组得唯一驻点由实际意义最小值存在,故1.求半径为R的圆的内接三角形中面积最大者.解:设内接三角形各边所对的圆心角为x,y,z,则它们所对应的三个三角形面积分别为设拉氏函数解方程组,得故圆内接正三角形面积最大,最大面积为第九章一元函数积分学多元函数积分学重积分曲线积分曲面积分重积分解法:类似定积分解决问题的思想:一、引例1.曲顶柱体的体积给定曲顶柱体:底:xoy面上的闭区域D顶:连续曲面侧面:以D的边界为准线,母线平行于z轴的柱面求其体积.“大化小,常代变,近似和,求极限”二重积
5、分的概念与性质第一节1)“大化小”用任意曲线网分D为n个区域以它们为底把曲顶柱体分为n个2)“常代变”在每个3)“近似和”则中任取一点小曲顶柱体4)“取极限”令2.平面薄片的质量有一个平面薄片,在xoy平面上占有区域D,计算该薄片的质量M.度为设D的面积为,则若非常数,仍可用其面密“大化小,常代变,近似和,求极限”解决.1)“大化小”用任意曲线网分D为n个小区域相应把薄片也分为小区域.2)“常代变”中任取一点3)“近似和”4)“取极限”则第k小块的质量两个问题的共性:(1)解决问题的步骤相同(2)所求量的结构式相同“大化小,常
6、代变,近似和,取极限”曲顶柱体体积:平面薄片的质量:二、二重积分的定义及可积性定义:将区域D任意分成n个小区域任取一点若存在一个常数I,使可积,在D上的二重积分.积分和积分域被积函数积分表达式面积元素记作是定义在有界区域D上的有界函数,如果在D上可积,与划分D的分割方法无关也常二重积分记作这时分区域D,因此面积元素可用平行坐标轴的直线来划记作曲顶柱体体积:平面薄板的质量:对二重积分定义的说明:(3)定积分与二重积分都表示某个和式的极限值,且此值只与被积函数及积分区域有关.不同的是定积分的积分区域为区间,被积函数为定义在区间上的一
7、元函数,而二重积分的积分区域为平面区域,被积函数为定义在平面区域上的二元函数.二重积分的几何意义当被积函数大于零时,二重积分是柱体的体积.当被积函数小于零时,二重积分是柱体的体积的负值.三、二重积分的性质(k为常数)为D的面积,则特别,由于则5.(比较定理)若在D上6.(估值定理)设D的面积为,则有7.(二重积分的中值定理)证:由性质6可知,由连续函数介值定理,至少有一点在闭区域D上为D的面积,则至少存在一点使使连续,因此例1.比较下列积分的大小:其中解:积分域D的边界为圆周它与x轴交于点(1,0),而域D位从而于直线的上
8、方,故在D上例3.估计下列积分之值解:D的面积为由于积分性质5即:1.96I2D对称性:1设D位于x轴上方的部分为D1,2、当区域关于y轴对称,函数关于变量x有奇偶性时,仍在D上在闭区域上连续,域D关于x轴对称,则则有类似结果.在第一象限部分,则有3、当区域