理性双矩阵经济博弈的期望均衡分析

理性双矩阵经济博弈的期望均衡分析

ID:41053662

大小:416.00 KB

页数:10页

时间:2019-08-15

理性双矩阵经济博弈的期望均衡分析_第1页
理性双矩阵经济博弈的期望均衡分析_第2页
理性双矩阵经济博弈的期望均衡分析_第3页
理性双矩阵经济博弈的期望均衡分析_第4页
理性双矩阵经济博弈的期望均衡分析_第5页
资源描述:

《理性双矩阵经济博弈的期望均衡分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几个常见理性双矩阵经济博弈的期望均衡分析基金项目:国家自然科学基金(78970025)作者简介:姜殿玉(1955-),男,辽宁凌源市人,教授。研究方向:博弈论与决策经营分析。姜殿玉淮海工学院经济管理系,江苏,连云港,222001摘要:关于完全信息静态博弈,有纯Nash均衡,混合Nash均衡和相关均衡等概念。如果每个局中人除了博弈的结构以外其他一无所知是全体局中人的共同知识(称为完全静态的),那么期望均衡是在极大熵准则是全体局中人的共同知识的条件下的一种均衡。本文首先介绍理性对策及其期望均衡的概念,然后由此分析了在文献中经常出现的一些经典博弈的期望均衡的结果,并与混合Nash均衡

2、结果进行比较。说明对于完全静态博弈,当局中人比通常情况下聪明(极大熵准则是他们的共同知识)的时候,其决策结果比混合Nash均衡更为确定和具有理性。关键词:极大熵准则,完全静态博弈,混合Nash均衡,期望均衡ExpectedEquilibriumAnalysisonSomeRationalEconomicsBi-matrixGamesJIANGDianyuSchoolofEconomicalManagement,HuaihaiInstituteofTechnology,Lianyungang,222001,ChinaAbstract:Inastaticgamewithcomple

3、teinformation,wehavetheconceptsofpureNashequilibria,mixedNashequilibriaandcorrelatedequilibria.Ifitisalltheplayers’commonknowledgethateveryplayerknowsnothingexceptstructureofthegame,calledcompletelystatic,thenasocalledexpectedequilibriumwasdefinedthatisanequilibriuminthecasethatmaximumentrop

4、yprincipleisalltheplayers’common.Inthispaper,weintroducetheconceptsofarationalgameanditsexpectedequilibria,thenanalysistheexpectedequilibriainsomeclassicalgamesinmanyliteratures.WecomparetheexpectedequilibriaandmixedNashequilibriainthesegamesaswell.Theresultsshowthatforacompletelystaticgamet

5、heplayers’decisionresultsaremorecertainandrationaliftheyaremoreintelligent,i.e.maximumentropyprincipleistheircommon.Keywords:maximumentropyprinciple;completelystaticgame;mixedNashequilibrium;expectedequilibrium1引言传统的完全信息静态博弈假定(1)局中人的集合,(2)每个局中人的行动集合和(3)博弈的效用函数是全体局中人的共同知识[1]。但是并不要求全体局中人的共同知识的

6、集合中不含有其他成分。如果这种博弈不含有其他成分,那么就称为完全静态博弈[2-4]。如果局中人的共同知识集合中有并且仅仅有(1),(2),(3)和(4)极大熵准则[5]:如果局中人对于可能发生的随机事件仅仅有一部分信息,那么他在决策时应该选择使得不知道的信息的不确定性达到最大的策略,那么这个博弈称为理性博弈[2-4]。文献[2,7]关于理性博弈引进了期望均衡的概念,并且给出其算法。文献[2]对于经典的博弈问题——囚徒困境、夫妻争执和鹰-鸽博弈用期望均衡的概念进行了探讨,所得结论是经典均衡无法得到的,并且更符合实际。本文首先介绍理性对策及其期望均衡的概念,然后由此分析了在文献中经

7、常出现的一些经典博弈的期望均衡的结果,并与混合Nash均衡结果进行比较。说明对于完全静态博弈,当局中人比通常情况下聪明(极大熵准则是他们的共同知识)的时候,其决策结果比混合Nash均衡更为确定和具有理性,且均衡的计算非常简洁。2、理性双矩阵博弈设1和2是两个局中人,和分别是局中人1和2的行动集合。和分别是局中人1和2的支付矩阵,即当剧中人1和2分别采用行动和时,局中人1和2分别得到效用和。设单纯形,分别是局中人2和1的判断集合[9],即表示局中人2判断局中人1以概率选择行动,表示局中人1判断

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。