资源描述:
《Solutions to the 74th William Lowell Putnam Mathematical Competition》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Solutionstothe74thWilliamLowellPutnamMathematicalCompetitionSaturday,December7,2013KiranKedlayaandLennyNgA1Supposeotherwise.Theneachvertexvisavertexforw0j(i.e.,thelastdigitofw0jcomesrightbeforethefirstfivefaces,allofwhichhavedifferentlabels,andsothedigi
2、tofw0j+1).SincewjhaslengthZ(wj)+N(wj),thesumofthelabelsofthefivefacesincidenttovisatleastsumofthelengthsofw1;:::;wkisk(Z+N),andsothe0+1+2+3+4=10.Addingthissumoverallverticesconcatenationofw01;:::;w0isastringofk(Z+N)con-kvgives339=117,sinceeachface’sla
3、beliscountedsecutivedigitsaroundthecircle.(Thisstringmaywrapthreetimes.Sincethereare12vertices,weconcludearoundthecircle,inwhichcasesomeofthesedigitsthat1012117,contradiction.mayappearmorethanonceinthestring.)BreakthisRemark:Onecanalsoobtainthedesir
4、edresultbystringintokarcsw001;:::;w00eachoflengthZ+N,eachkshowingthatanycollectionoffivefacesmustcontainadjacenttothepreviousone.(Notethatifthenum-twofacesthatshareavertex;itthenfollowsthateachberofdigitsaroundthecircleism,thenZ+Nmlabelcanappearatmost
5、4times,andsothesumofallsinceZ(wj)+N(wj)mforallj,andthuseachoflabelsisatleast4(0+1+2+3+4)=40>39,contra-w00;:::;w00isindeedanarc.)1kdiction.Weclaimthatforsomej=1;:::;k,Z(w00j)=ZandN(w00j)=N(wherethesecondequationfollowsfromA2Supposetothecontrarythatf(n
6、)=f(m)withn