4. Statement of the mathematical programming problem and types of solutions

4. Statement of the mathematical programming problem and types of solutions

ID:40555223

大小:56.43 KB

页数:3页

时间:2019-08-04

4. Statement of the mathematical programming problem and types of solutions _第1页
4. Statement of the mathematical programming problem and types of solutions _第2页
4. Statement of the mathematical programming problem and types of solutions _第3页
资源描述:

《4. Statement of the mathematical programming problem and types of solutions 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、StatementofthemathematicalprogrammingandtypesofsolutionsInstructor:MinWang1.ElementsofamaximizationproblemObjectivefunction:F:Rn!Rdi¤erentiable.0Vectorofchoicevariable:x=(x1x2x3...xn).Constraintset(orchoiceset):XRn:2.ProblemmaxF(x)w:r:txsubjecttoxX:Notes:Min

2、imizeF(x)bymaxF(x).Di¤erentformsofXgivevarietyofspecialcases:–X=Rn,unconstrainedoptimization.–EqualityconstrainedoptimizationX=fx2Rn:g(x)=b;g(x)=b;:::;g(x)=bg1122mmwhereg:Rn!Risdi¤erentiableandb2Rforallj=1;2;:::;m:Expectn>m.jj–gj(x)bjorxi0:–Kuhn-Tuckerformulat

3、ionX=fx2Rn:x0fori=1;2;:::;n;g(x)bforj=1;2;:::;mg:ijjTypesofsolutions–xisalocalsolutionto(+)((+)denotesthemaximizationproblem)ifthereexists">0suchthatF(x)F(x)forallx2XB(x):"–xisastrictlylocalsolutionto(+)ifthereexists">0suchthatF(x)>F(x)forallx2XB(x)and

4、x6=x."–xisaglobalsolutionto(+)ifF(x)F(x)forallx2X.–xisastrictlyglobalsolutionto(+)ifF(x)>F(x)forallx2Xandx6=x.3.FirstordernecessaryconditionWritex2XB(x)asx=x+hx,wherex2Rn,kxk=1,h2(";").Thenxisalocal"solutiontowithX=Rnifthereexists">0suchthatF(x)F

5、(x+hx)forallx2Rn,kxk=1,andforallh2(";"):ConsiderTaylorexpansionaroundx,@F1@2FF(x+hx)=F(x)+h(x)x+h2x0(x+hx)x;@x2@x2forsome2(0;1):1Combiningtheabovetwoconditions,xisalocalsolutionto(+)withX=Rnifthereexists">0suchthat@F1@2Fh(x)x+h2x0(x+hx)x

6、0(Fundamentalinequality)@x2@x2forallx2Rn,kxk=1,andforallh2(";"):Letx=ithunitcoordinatorvector(onlytheithelementofthevectortakesthevalueof1andallothersarezero).Thentakeh2(0;"),dividethefundamentalinequalitybyh>0andtakethelimitash!0+,wehave@F(x)0;@xiTakeh2(

7、";0),dividethefundamentalinequalitybyh<0andtakethelimitash!0,wehave@F(x)0:@xiHencethelocalsolutionto(+)needtosatisfythe…rstordernecessarycondition@F(x)=0:@x4.SecondordernecessaryconditionForanygivenxandh6=0,dividethefundamentalinequalityby1h2>0andtakethelim

8、itas2h!0,wehave@2Fx0(x)x0@x2forallx2Rnandkxk=1.2Hencethelocalsolutionto(+)needtosatisfythesecondordernecessarycondition@F(x)is@x2negativesemi-de

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。