MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices

MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices

ID:40946585

大小:120.59 KB

页数:5页

时间:2019-08-11

MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices_第1页
MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices_第2页
MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices_第3页
MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices_第4页
MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices_第5页
资源描述:

《MIT18_06SCF11_Ses1.13Graphs, Networks, Incidence Matrices》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnoverviewofkeyideasThisisanoverviewoflinearalgebragivenatthestartofacourseonthemathematicsofengineering.Linearalgebraprogressesfromvectorstomatricestosubspaces.VectorsWhatdoyoudowithvectors?Takecombinations.Wecanmultiplyvectorsbyscalars,add,andsubtract.Givenvectorsu,vandwwecanformthe

2、linearcombinationx1u+x2v+x3w=b.AnexampleinR3wouldbe:⎡⎤⎡⎤⎡⎤100u=⎣−1⎦,v=⎣1⎦,w=⎣0⎦.0−11Thecollectionofallmultiplesofuformsalinethroughtheorigin.Thecollectionofallmultiplesofvformsanotherline.Thecollectionofallcombinationsofuandvformsaplane.Takingallcombinationsofsomevectorscreatesasubspa

3、ce.Wecouldcontinuelikethis,orwecanuseamatrixtoaddinallmultiplesofw.MatricesCreateamatrixAwithvectorsu,vandwinitscolumns:⎡⎤100A=⎣−110⎦.0−11Theproduct:⎡⎤⎡⎤⎡⎤100x1x1Ax=⎣−110⎦⎣x2⎦=⎣−x1+x2⎦0−11x3−x2+x3equalsthesumx1u+x2v+x3w=b.Theproductofamatrixandavectorisacombinationofthecolumnsofthemat

4、rix.(ThisparticularmatrixAisadifferencematrixbecausethecomponentsofAxaredifferencesofthecomponentsofthatvector.)Whenwesayx1u+x2v+x3w=bwe’rethinkingaboutmultiplyingnumbersbyvectors;whenwesayAx=bwe’rethinkingaboutmultiplyingamatrix(whosecolumnsareu,vandw)bythenumbers.Thecalculationsaret

5、hesame,butourperspectivehaschanged.1Foranyinputvectorx,theoutputoftheoperation“multiplicationbyA”issomevectorb:⎡⎤⎡⎤11A⎣4⎦=⎣3⎦.95Adeeperquestionistostartwithavectorbandask“forwhatvectorsxdoesAx=b?”Inourexample,thismeanssolvingthreeequationsinthreeunknowns.Solving:⎡⎤⎡⎤⎡⎤⎡⎤100x1x1b1Ax=⎣−

6、110⎦⎣x2⎦=⎣x2−x1⎦=⎣b2⎦0−11x3x3−x2b3isequivalenttosolving:x1=b1x2−x1=b2x3−x2=b3.Weseethatx1=b1andsox2mustequalb1+b2.Invectorform,thesolutionis:⎡⎤⎡⎤x1b1⎣x2⎦=⎣b1+b2⎦.x3b1+b2+b3Butthisjustsays:⎡⎤⎡⎤100b1x=⎣110⎦⎣b2⎦,111b3orx=A−1b.IfthematrixAisinvertible,wecanmultiplyonbothsidesbyA−1tofindthe

7、uniquesolutionxtoAx=b.WemightsaythatArepresentsatransformx→bthathas�an�inversetransform��b→x.00Inparticular,ifb=0thenx=0.00Thesecondexamplehasthesamecolumnsuandvandreplacescolumnvectorw:⎡⎤10−1C=⎣−110⎦.0−11Then:⎡⎤⎡⎤⎡⎤10−1x1x1−x3Cx=⎣−110⎦⎣x2⎦=⎣x2−x1⎦0−11x3x3−x2andoursystemofthreeequatio

8、nsint

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。