资源描述:
《椭圆方程精解》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、椭圆作图范例椭圆是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为常值的点之轨迹。它是圆锥曲线的一种,即圆锥与平面的截线。椭圆在方程上可以写为标准式x^2/a^2+y^2/b^2=1,它还有其他一些表达形式,如参数方程表示等等。椭圆在开普勒行星运行三定律中扮演了重要角色,即行星轨道是椭圆,以恒星为焦点。 [~]椭圆的第一定义 tuǒyuǎn 平面内与两定点F、F'的距离的和等于常数2a(2a>
2、FF'
3、的动点P的轨迹叫做椭圆。 即:│PF│+│PF'│=2a 其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫
4、做椭圆的焦距。[~]椭圆的第二定义 平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是X=a^2/c)。 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况[~]计算机图形学约束 椭圆必须一条直径与X轴平行,另一条直径Y轴平行。不满足此条件的几何学椭圆在计算机图形学上视作一般封闭曲线。[~]
5、标准方程 高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。 椭圆的标准方程有两种,取决于焦点所在的坐标轴: 1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1(a>b>0) 2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1(a>b>0) 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5
6、,焦距与长.短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ 标准形式的椭圆在x0,y0点的切线就是:xx0/a^2+yy0/b^2=1[~]3公式椭圆的面积公式 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=π(圆周率)×A×B/4(其中A,B分别是椭
7、圆的长轴,短轴的长).椭圆的周长公式 椭圆周长没有公式,有积分式或无限项展开式。 椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如 L=∫[0,π/2]4a*sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2)[椭圆近似周长],其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL 椭圆的准线方程 x=±a^2/C 椭圆的离心率公式 e=c/a(e<1,因为2a>2c) 椭圆的焦准距:椭圆
8、的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c 椭圆焦半径公式|PF1|=a+ex0|PF2|=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex 椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值= b^2/a 点与椭圆位置关系点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1 点在圆内:x0^2/a^2+y0^2/b^2<1 点在圆上:x0^2/a^2+y0^2/b^2=1 点在圆外:x0^2/a^2+y0^2/b^2>1 直线与椭圆位置关系
9、 y=kx+m① x^2/a^2+y^2/b^2=1② 由①②可推出x^2/a^2+(kx+m)^2/b^2=1 相切△=0 相离△<0无交点 相交△>0可利用弦长公式:A(x1,y1)B(x2,y2)
10、AB
11、=d=√(1+k^2)
12、x1-x2
13、=√(1+k^2)(x1-x2)^2=√(1+1/k^2)
14、y1-y2
15、=√(1+1/k^2)(y1-y2)^2 椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a椭圆的斜率公式 过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为-(b^2)X/(a^2)
16、y[~]4椭圆参数方程的