Simulating Text With Markov Chains in Python – Towards Data Science

Simulating Text With Markov Chains in Python – Towards Data Science

ID:40726136

大小:2.25 MB

页数:6页

时间:2019-08-06

Simulating Text With Markov Chains in Python – Towards Data Science_第1页
Simulating Text With Markov Chains in Python – Towards Data Science_第2页
Simulating Text With Markov Chains in Python – Towards Data Science_第3页
Simulating Text With Markov Chains in Python – Towards Data Science_第4页
Simulating Text With Markov Chains in Python – Towards Data Science_第5页
资源描述:

《Simulating Text With Markov Chains in Python – Towards Data Science》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ApplausefromLudovicBenistantand60othersBenShaverFollowDataScienceImmersivestudent @GADCDec22·3minreadSimulatingTextWithMarkovChainsinPythonInmylastpost,IintroducedMarkovchainsinthecontextofMarkovchainMonteCarlomethods.Thispostisasmalladdendumtothatone,dem

2、onstratingonefunthingyoucandowithMarkovchains:simulatetext.PixabayAMarkovchainisasimulatedsequenceofevents.Eacheventinthesequencecomesfromasetofoutcomesthatdependononeanother.Inparticular,eachoutcomedetermineswhichoutcomesarelikelytooccurnext.InaMarkovcha

3、in,alloftheinformationneededtopredictthenexteventiscontainedinthemostrecentevent.ThatmeansthatknowingthefullhistoryofaMarkovchaindoesn’thelpyoupredictthenextoutcomeanybetterthanonlyknowingwhatthelastoutcomewas.Markovchainsaren’tgenerallyreliablepredictors

4、ofeventsinthenearterm,sincemostprocessesintherealworldaremorecomplexthanMarkovchainsallow.Markovchainsare,however,usedtoexaminethelong-runbehaviorofaseriesofeventsthatarerelatedtooneanotherbyxedprobabilities.Foranysequenceofnon-independenteventsintheworl

5、d,andwherealimitednumberofoutcomescanoccur,conditionalprobabilitiescanbecomputedrelatingeachoutcometooneanother.Oftenthissimplytakestheformofcountinghowoftencertainoutcomesfollowoneanotherinanobservedsequence....Togenerateasimulationbasedonacertaintext,co

6、untupeverywordthatisused.Then,foreveryword,storethewordsthatareusednext.Thisisthedistributionofwordsinthattextconditionalontheprecedingword.InordertosimulatesometextfromDonaldTrump,let’suseacollectionofhisspeechesfromthe2016campaignavailablehere.Firstimpo

7、rtnumpyandthetextlecontainingTrump’sspeeches:importnumpyasnptrump=open('speeches.txt',encoding='utf8').read()Then,splitthetextleintosinglewords.Notewe’rekeepingallthepunctuationin,sooursimulatedtexthaspunctuation:corpus=trump.split()Then,wedeneafunctio

8、ntogiveusallthepairsofwordsinthespeeches.We’reusinglazyevaluation,andyieldingageneratorobjectinsteadofactuallyllingupourmemorywitheverypairofwords:defmake_pairs(corpus):foriinrange(len(corpus)-1):yield(corpus[i],co

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。