资源描述:
《Simulating Markov chains》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Copyrightc2007byKarlSigman1SimulatingMarkovchainsManystochasticprocessesusedforthemodelingofnancialassetsandothersystemsinengi-neeringareMarkovian,andthismakesitrelativelyeasytosimulatefromthem.HerewepresentabriefintroductiontothesimulationofMarkovchains
2、.Ouremphasisisondiscrete-statechainsbothindiscreteandcontinuoustime,butsomeexampleswithageneralstatespacewillbediscussedtoo.1.1DenitionofaMarkovchainWeshallassumethatthestatespaceSofourMarkovchainisS=ZZ=f:::; 2; 1;0;1;2;:::g,theintegers,orapropersubsetof
3、theintegers.TypicalexamplesareS=IN=f0;1;2:::g,thenon-negativeintegers,orS=f0;1;2:::;ag,orS=f b;:::;0;1;2:::;agforsomeintegersa;b>0,inwhichcasethestatespaceisnite.Denition1.1AstochasticprocessfXn:n0giscalledaMarkovchainifforalltimesn0andallstatesi0;:::
4、;i;j2S,P(Xn+1=jjXn=i;Xn 1=in 1;:::;X0=i0)=P(Xn+1=jjXn=i)(1)=Pij:Pijdenotestheprobabilitythatthechain,wheneverinstatei,movesnext(oneunitoftimelater)intostatej,andisreferredtoasaone-steptransitionprobability.ThesquarematrixP=(Pij);i;j2S;iscalledtheone-stept
5、ransitionmatrix,andsincewhenleavingstateithechainmustmovetooneofthestatesj2S,eachrowsumstoone(e.g.,formsaprobabilitydistribution):ForeachiXPij=1:j2SWeareassumingthatthetransitionprobabilitiesdonotdependonthetimen,andso,inparticular,usingn=0in(1)yieldsPij=
6、P(X1=jjX0=i):(FormallyweareconsideringonlytimehomogenousMC'smeaningthattheirtransitionprob-abilitiesaretime-homogenous(timestationary).)Thedeningproperty(1)canbedescribedinwordsasthefutureisindependentofthepastgiventhepresentstate.Lettingnbethepresenttim
7、e,thefutureaftertimenisfXn+1;Xn+2;:::g,thepresentstateisXn,andthepastisfX0;:::;Xn 1g.IfthevalueXn=iisknown,thenthefutureevolutionofthechainonlydepends(atmost)oni,inthatitisstochasticallyindependentofthepastvaluesXn 1;:::;X0.MarkovProperty:Conditionalonthe
8、rvXn,thefuturesequenceofrvsfXn+1;Xn+2;:::gisindepen-dentofthepastsequenceofrvsfX0;:::;Xn 1g.ThedeningMarkovpropertyabovedoesnotrequirethatthestatespacebediscrete,andingeneralsuchaprocesspossessingtheMarkovpropertyi