modeling non stationary hidden semi-markov chains with triplet markov chains and theory of

modeling non stationary hidden semi-markov chains with triplet markov chains and theory of

ID:34651725

大小:134.39 KB

页数:6页

时间:2019-03-08

modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第1页
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第2页
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第3页
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第4页
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第5页
资源描述:

《modeling non stationary hidden semi-markov chains with triplet markov chains and theory of》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、IEEEWorkshoponStatisticalSignalProcessing(SSP2005),Bordeaux,France,July2005MODELINGNONSTATIONARYHIDDENSEMI-MARKOVCHAINSWITHTRIPLETMARKOVCHAINSANDTHEORYOFEVIDENCEWojciechPieczynskiINT/GET,DépartementCITI,CNRSUMR51579,rueCharlesFourier,91000Evry,FranceABS

2、TRACTone,areavailable,whichenablesunsupervisedestimationofXfromY.HiddenMarkovchains,enablingonetorecoverthehiddenClassically,HMC-INhavebeenextendedintwoprocessevenforverylargesize,arewidelyusedinvariousdirections:problems.Ontheonehand,ithasbeenrecently(

3、i)InHMC-INthehiddenchainXisaMarkovone,andestablishedthatwhenthehiddenchainisnotstationary,thusthesojourndurationdistributionineachstateistheuseofthetheoryofevidenceisequivalenttoconsiderexponential.Inhiddensemi-MarkovchainswithatripletMarkovchainandcani

4、mprovetheefficiencyofindependentnoise(HSMC-IN),whichformanextensionunsupervisedsegmentation.Ontheotherhand,hiddenofHMC-IN,thisdistributionisofanykind.HSMC-INaresemi-Markovchainscanalsobeconsideredasparticularusefulinmanysituations,asimagessequenceanalys

5、is[5],tripletMarkovchains.Theaimofthispaperistousethesespeechprocessing[6],orstilltrackingproblems[15],twopointssimultaneously.Consideringanonstationaryamongothers;hiddensemi-Markovchain,weshowthatitispossibleto(ii)morerecently,HMC-INhavebeenextendedtoc

6、onsidertwoauxiliaryrandomchainsinsuchawaythat“pairwiseMarkovchains”(PMC[9]),inwhichoneunsupervisedsegmentationofnonstationaryhiddensemi-directlyassumestheMarkovianityofZ=(X,Y)andinMarkovchainsisworkable.whichXisnolongernecessarilyaMarkovchain,andto“trip

7、letMarkovchains”(TMC[10,13]),inwhichoneintroducesathirdauxiliaryrandomchainU=(U,...,U)1n1.INTRODUCTIONandassumestheMarkovianityofthetripletT=(X,U,Y).WhentherandomvariablesU,...,UtakeLetZ=(X,Y),withX=(X,...,X),Y=(Y,...,Y)be1n1n1ntheirvaluesinadiscretefin

8、itespace,bothPMCandTMCtworandomchains,whereeachXtakesitsvaluesinistillenabletoestimateXfromYbyBayesianmethods.W={w1,...,wk}andeachYtakesitsvaluesinR.WeiLetusmentionthatTMCcanbealsousedwhenthethreewillsaythatZ=(X,Y)isaclassicalhid

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。