Semantic Image Inpainting with Perceptual and Contextual Losses

Semantic Image Inpainting with Perceptual and Contextual Losses

ID:40725576

大小:1.47 MB

页数:10页

时间:2019-08-06

Semantic Image Inpainting with Perceptual and Contextual Losses_第1页
Semantic Image Inpainting with Perceptual and Contextual Losses_第2页
Semantic Image Inpainting with Perceptual and Contextual Losses_第3页
Semantic Image Inpainting with Perceptual and Contextual Losses_第4页
Semantic Image Inpainting with Perceptual and Contextual Losses_第5页
资源描述:

《Semantic Image Inpainting with Perceptual and Contextual Losses》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SemanticImageInpaintingwithPerceptualandContextualLossesRaymondYehChenChenTeckYianLim,MarkHasegawa-JohnsonMinhN.DoDept.ofElectricalandComputerEngineeringUniversityofIllinoisatUrbana-Champaign{yeh17,cchen156,tlim11,jhasegaw,minhdo}@illinois.eduAbstractInthispaper,wep

2、roposeanovelmethodforimageinpaintingbasedonaDeepConvolutionalGenerativeAdversarialNetwork(DCGAN).Wedefinealossfunc-tionconsistingoftwoparts:(1)acontextuallossthatpreservessimilaritybetweentheinputcorruptedimageandtherecoveredimage,and(2)aperceptuallossthatensuresaperce

3、ptuallyrealisticoutputimage.Givenacorruptedimagewithmiss-ingvalues,weuseback-propagationonthislosstomapthecorruptedimagetoasmallerlatentspace.Themappedvectoristhenpassedthroughthegenerativemodeltopredictthemissingcontent.TheproposedframeworkisevaluatedontheCelebAandSV

4、HNdatasetsfortwochallenginginpaintingtaskswithrandom80%corruptionandlargeblockycorruption.Experimentsshowthatourmethodcansuccessfullypredictsemanticinformationinthemissingregionandachievepixel-levelphotorealism,whichisimpossiblebyalmostallexistingmethods.1Introduction

5、Thegoalofinpaintingistoreconstructthemissingordamagedportionsofanimage.Ithasnu-merousapplicationssuchasrestorationofdamagedpaintingsorimageediting[3].Inpaintingforgeneralimagesisachallengingproblemasitisill-posed.Sufficientpriorinformationisrequiredinthereconstructiont

6、oachieveameaningfulandvisuallybelievableresult.Existingmethodsareoftenbasedoneitherlocalornon-localinformationtorecovertheimage.Localmethodsrelyonthepriorinformationthatexistintheinputimage.Forexample,theholesintextureimagescanbefilledbyfindingthenearestpatchesfromthesa

7、meimage[6].TotalvariationarXiv:1607.07539v2[cs.CV]14Nov2016approachestakeintoaccountofthesmoothnessofanaturalimage,whichenablessmallholesandspuriousnoisestoberemoved[22].Certainsubsetsofimagescouldalsocontainspecialproperties,suchasbeingplanar[12]orhavingalowrankstruc

8、ture[11];reconstructionresultscanbegreatlyimprovedbytakingintoconsiderationthesepriorknowledge.Theselocalmethodscanbeefficien

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。