Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

ID:40724673

大小:1.25 MB

页数:12页

时间:2019-08-06

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank_第1页
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank_第2页
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank_第3页
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank_第4页
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank_第5页
资源描述:

《Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RecursiveDeepModelsforSemanticCompositionalityOveraSentimentTreebankRichardSocher,AlexPerelygin,JeanY.Wu,JasonChuang,ChristopherD.Manning,AndrewY.NgandChristopherPottsStanfordUniversity,Stanford,CA94305,USArichard@socher.org,faperelyg,jcchuang,angg@cs.stanford.edufjeaneis,manning,cgpottsg@stanfo

2、rd.eduAbstract–0–Semanticwordspaceshavebeenveryuse-00–0Thisfilm.fulbutcannotexpressthemeaningoflonger–0phrasesinaprincipledway.Furtherprogress00++doesn’tcaretowardsunderstandingcompositionalityin0+abouttaskssuchassentimentdetectionrequires++richersupervisedtrainingandevaluationre-+00+orsourcesand

3、morepowerfulmodelsofcom-+0000+witanyofposition.Toremedythis,weintroducea+00++++cleverness,otherkindintelligenthumorSentimentTreebank.Itincludesfinegrainedsentimentlabelsfor215,154phrasesintheFigure1:ExampleoftheRecursiveNeuralTensorNet-parsetreesof11,855sentencesandpresentsworkaccuratelypredictin

4、g5sentimentclasses,veryneg-newchallengesforsentimentcomposition-ativetoverypositive(––,–,0,+,++),ateverynodeofaality.Toaddressthem,weintroducetheparsetreeandcapturingthenegationanditsscopeinthisRecursiveNeuralTensorNetwork.Whensentence.trainedonthenewtreebank,thismodelout-performsallpreviousmeth

5、odsonseveralmet-rics.Itpushesthestateoftheartinsinglesentencepositive/negativeclassificationfrommodelstoaccuratelycapturetheunderlyingphe-80%upto85.4%.Theaccuracyofpredictingnomenapresentedinsuchdata.Toaddressthisneed,fine-grainedsentimentlabelsforallphrasesweintroducetheStanfordSentimentTreebanka

6、ndreaches80.7%,animprovementof9.7%overbagoffeaturesbaselines.Lastly,itistheonlyapowerfulRecursiveNeuralTensorNetworkthatmodelthatcanaccuratelycapturetheeffectscanaccuratelypredictthecompositionalsemanticofnegationanditsscopeatvarioustreelevelseffectspresentinthisnewcorpus.forbothpositiveandnegat

7、ivephrases.TheStanfordSentimentTreebankisthefirstcor-puswithfullylabeledparsetreesthatallowsfora1Introductioncompleteanalysisofthecompositionaleffectsofsentimentinlanguage.ThecorpusisbasedonSemanticvectorspacesforsinglewordsh

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。