Recursive Deep Models for Discourse Parsing

Recursive Deep Models for Discourse Parsing

ID:39716073

大小:259.77 KB

页数:9页

时间:2019-07-09

Recursive Deep Models for Discourse Parsing _第1页
Recursive Deep Models for Discourse Parsing _第2页
Recursive Deep Models for Discourse Parsing _第3页
Recursive Deep Models for Discourse Parsing _第4页
Recursive Deep Models for Discourse Parsing _第5页
资源描述:

《Recursive Deep Models for Discourse Parsing 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RecursiveDeepModelsforDiscourseParsingJiweiLi1,RumengLi2andEduardHovy31ComputerScienceDepartment,StanfordUniversity,Stanford,CA94305,USA2SchoolofEECS,PekingUniversity,Beijing100871,P.R.China3LanguageTechnologyInstitute,CarnegieMellonUniversity,Pittsburgh,PA15213,USAjiweil@stanford.edual

2、icerumeng@foxmail.comehovy@andrew.cmu.eduAbstractHirst,2012;Jotyetal.,2013))arestillconsid-erablyinferiorwhencomparedtohumangold-Text-leveldiscourseparsingremainsastandarddiscourseanalysis.Thechallengestemschallenge:mostapproachesemployfea-fromthefactthatcomparedwithsentence-levelturest

3、hatfailtocapturetheintentional,se-dependencyparsing,thesetofrelationsbetweenmantic,andsyntacticaspectsthatgoverndiscourseunitsislessstraightforwardtodefine.discoursecoherence.Inthispaper,wepro-Becausetherearenoclause-level‘partsofdis-posearecursivemodelfordiscoursepars-course’analogousto

4、word-levelpartsofspeech,ingthatjointlymodelsdistributedrepre-thereisnodiscourse-levelgrammaranalogoustosentationsforclauses,sentences,anden-sentence-levelgrammar.Tounderstandhowdis-tirediscourses.Thelearnedrepresenta-courseunitsareconnected,onehastounderstandtionscantosomeextentlearnthe

5、seman-thecommunicativefunctionofeachunit,andtheticandintentionalimportofwordsandroleitplayswithinthecontextthatencapsulatesit,largerdiscourseunitsautomatically,.Thetakenrecursivelyallthewayupfortheentiretext.proposedframeworkobtainscomparableManuallydevelopedfeaturesrelatingtowordsandpe

6、rformanceregardingstandarddiscours-othersyntax-relatedcues,usedinmostofthere-ingparsingevaluationswhencomparedcentprevailingapproaches(e.g.,(FengandHirst,againstcurrentstate-of-artsystems.2012;Hernaultetal.,2010b)),areinsufficientforcapturingsuchnestedintentionality.1IntroductionRecently

7、,deeplearningarchitectureshavebeenInacoherenttext,units(clauses,sentences,andappliedtovariousnaturallanguageprocessinglargermulti-clausegroupings)aretightlycon-tasks(fordetailsseeSection2)andhaveshownnectedsemantically,syntactically,andlogically.theadvantagestocapturetherelevan

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。