Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测

Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测

ID:39765422

大小:1.40 MB

页数:15页

时间:2019-07-11

Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测_第1页
Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测_第2页
Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测_第3页
Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测_第4页
Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测_第5页
资源描述:

《Correlation-based Deep Learning for Multimedia Semantic Concept Detection基于相关深度学习分享检测》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Correlation-basedDeepLearningforMultimediaSemanticConceptDetectionHsin-YuHa,YiminYang,SamiraPouyanfar,HaimanTian,andShu-ChingChenSchoolofComputingandInformationSciences,FloridaInternationalUniversity,Mami,FL33199,USA{hha001,yyang010,spouy001,htian005,chens}@

2、cs.fiu.eduAbstract.Nowadays,conceptdetectionfrommultimediadataiscon-sideredasanemergingtopicduetoitsapplicabilitytovariousapplica-tionsinbothacademiaandindustry.However,therearesomeinevitablechallengesincludingthehighvolumeandvarietyofmultimediadataaswellasi

3、tsskeweddistribution.Tocopewiththesechallenges,inthispaper,anovelframeworkisproposedtointegratetwocorrelation-basedmethods,Feature-CorrelationMaximumSpanningTree(FC-MST)andNegative-basedSampling(NS),withawell-knowndeeplearningalgo-rithmcalledConvolutionalNeu

4、ralNetwork(CNN).First,FC-MSTisintroducedtoselectthemostrelevantlow-levelfeatures,whichareex-tractedfrommultiplemodalities,andtodecidetheinputlayerdimensionoftheCNN.Second,NSisadoptedtoimprovethebatchsamplingintheCNN.UsingNUS-WIDEimagedatasetasaweb-basedappli

5、ca-tion,theexperimentalresultsdemonstratethee ectivenessofthepro-posedframeworkforsemanticconceptdetection,comparingtootherwell-knownclassi ers.Keywords:DeepLearning,FeatureSelection,Sampling,SemanticCon-ceptDetection,Web-basedMultimediaData1IntroductionInre

6、centdecades,thenumberofmultimediadatatransferredviatheInternetincreasesrapidlyineveryminute.Multimediadata,whichreferstodatacon-sistingofvariousmediatypesliketext,audio,video,aswellasanimation,isrichinsemantics.Tobridgethesemanticgapbetweenthelow-levelfeatur

7、esandhigh-levelconcepts,itintroducesseveralinterestingresearchtopicslike,datarepresentations,modelfusion,imbalanceddataissue,reductionoffeaturedimensions,etc.Becauseoftheexplosivegrowthofmultimediadata,thecomplexityrisesexponentiallywithlinearlyincreasingdim

8、ensionsofthedata,whichposesagreatchallengetomultimediadataanalysis,especiallysemanticconceptdetection.Duetothisfact,itdrawsmultimediasociety'sattentiontoidentifyusefulfeaturesubsets,reducethefea

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。