2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction

2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction

ID:40705911

大小:273.37 KB

页数:12页

时间:2019-08-06

2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction_第1页
2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction_第2页
2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction_第3页
2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction_第4页
2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction_第5页
资源描述:

《2017-PAKDD-Dependency-tree Based Convolutional Neural Networks for Aspect Term Extraction》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Dependency-treeBasedConvolutionalNeuralNetworksforAspectTermExtractionHaiYey,ZichaoYany,ZhunchenLuoz??andWenhanChaoyySchoolofComputerScienceandEngineering,BeihangUniversity,Beijing,ChinazChinaDefenseScienceandTechnologyInformationCenter,Beijing,Chinafyehai,yanzichao,chaowenhang@buaa.edu.cn,zhunchen

2、luo@gmail.comAbstract.Aspecttermextractionisoneofthefundamentalsubtasksinaspect-basedsentimentanalysis.Previousworkhasshownthatsen-tences'dependencyinformationiscriticalandhasbeenwidelyusedforopinionmining.Withrecentsuccessofdeeplearninginnaturallanguageprocessing(NLP),recurrentneuralnetwork(RNN)ha

3、sbeenproposedforaspecttermextractionandshowsthesuperiorityoverfeature-richCRFsbasedmodels.However,becauseRNNisasequentialmodel,itcannote ectivelycapturetree-baseddependencyinformationofsentencesthuslimitingitspracticability.Inordertoe ectivelyexploitsentences'dependencyinformationandleveragethee ec

4、tivenessofdeeplearning,weproposeanoveldependency-treebasedconvolutionalstackedneuralnetwork(DTBCSNN)foraspecttermextraction,inwhichtree-basedconvolutionisintroducedoversentences'dependencyparsetreestocap-turesyntacticfeatures.Ourmodelisanend-to-enddeeplearningbasedmodelanditdoesnotneedanyhuman-craf

5、tedfeatures.Furthermore,ourmodelis exibletoincorporateextralinguisticfeaturestofurtherboostthemodelperformance.Tosubstantiate,resultsfromexperimentsonSemEval2014Task4datasets(reviewsonrestaurantandlaptopdomain)showthatourmodelachievesoutstandingperformanceandoutperformstheRNNandCRFbaselines.Keyword

6、s:Aspecttermextraction,Dependencyinformation,Tree-basedconvolution,Deeplearning1IntroductionAspect-basedsentimentanalysis(oropinionmining)aimstoidentifytheopin-ionsinagivendocument.Toachievethisgoal,sixsubtasksshouldbeconsideredandaspecttermextractionisoneoftheimportantsubtasks[1].Aspecttermsareatt

7、ributes(orproperties)oftheentitythatopinionexpresseson.Forexam-ple,giventheproductreviewIlovethewaytheentiresuiteofsoftwareworkstogether",theaspecttermissuiteofsoftware".??Correspondingauthor.2HaiYe,Zicha

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。