15)20161028 Convolutional Neural Network

15)20161028 Convolutional Neural Network

ID:40704209

大小:4.24 MB

页数:45页

时间:2019-08-06

15)20161028 Convolutional Neural Network_第1页
15)20161028 Convolutional Neural Network_第2页
15)20161028 Convolutional Neural Network_第3页
15)20161028 Convolutional Neural Network_第4页
15)20161028 Convolutional Neural Network_第5页
资源描述:

《15)20161028 Convolutional Neural Network》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ConvolutionalNeuralNetworkWhyCNNforImage?[Zeiler,M.D.,ECCV2014]x……1x2…………………………Representedaspixelsx……NThemostbasicUse1stlayerasmoduleUse2ndlayerasclassifierstobuildclassifiersmodule……Canthenetworkbesimplifiedbyconsideringthepropertiesofimages?WhyCNNforIma

2、ge•SomepatternsaremuchsmallerthanthewholeimageAneurondoesnothavetoseethewholeimagetodiscoverthepattern.Connectingtosmallregionwithlessparameters“beak”detectorWhyCNNforImage•Thesamepatternsappearindifferentregions.“upper-leftbeak”detectorDoalmostthesamethi

3、ngTheycanusethesamesetofparameters.“middlebeak”detectorWhyCNNforImage•SubsamplingthepixelswillnotchangetheobjectbirdbirdsubsamplingWecansubsamplethepixelstomakeimagesmallerLessparametersforthenetworktoprocesstheimageThewholeCNNcatdog……ConvolutionMaxPoolin

4、gCanrepeatFullyConnectedmanytimesFeedforwardnetworkConvolutionMaxPoolingFlattenThewholeCNNProperty1SomepatternsaremuchConvolutionsmallerthanthewholeimageProperty2MaxPoolingThesamepatternsappearinCanrepeatdifferentregions.manytimesProperty3ConvolutionSu

5、bsamplingthepixelswillnotchangetheobjectMaxPoolingFlattenThewholeCNNcatdog……ConvolutionMaxPoolingCanrepeatFullyConnectedmanytimesFeedforwardnetworkConvolutionMaxPoolingFlattenCNN–ConvolutionThosearethenetworkparameterstobelearned.1-1-1100001Filter1-11-101

6、0010Matrix-1-11001100100010-11-1Filter2010010-11-1Matrix001010-11-1……6x6imageEachfilterdetectsasmallProperty1pattern(3x3).1-1-1CNN–Convolution-11-1Filter1-1-11stride=11000010100103-10011001000100100100010106x6image1-1-1CNN–Convolution-11-1Filter1-1-11Ifst

7、ride=21000010100103-3001100100010010010Wesetstride=1below0010106x6image1-1-1CNN–Convolution-11-1Filter1-1-11stride=11000010100103-1-3-1001100100010-310-3010010001010-3-3016x6image3-2-2-1Property2-11-1CNN–Convolution-11-1Filter2-11-1stride=1Dothesameproces

8、sforeveryfilter1000010100103-1-3-1-1-1-1-1001100100010-310-3-1-1-21Feature010010001010-3-1-3-1Map0-2116x6image3-2-2-1-10-434x4imageCNN–Colorfulimage11-1-1-1-1-1-111-1-11-1-1-11-1-1-111-1-1-1-111-1-1-11-1Filter1-11-1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。