资源描述:
《Sergiu Klainerman_ Introduction to General Relativity》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LECTURENOTESINGENERALRELATIVITY:Spring2009SergiuKlainermanDepartmentofMathematics,PrincetonUniversity,PrincetonNJ08544E-mailaddress:seri@math.princeton.eduCHAPTER1SpecialRelativity1.MinkowskiSpaceThen+1dimensionalMinkowskispace,whichwedenotebyRn+1,consistsofthemanifoldRn+1togetherw
2、ithaLorentzmetricmandadistinguishedsystemofcoordinatesx,=0;1;:::n,calledinertial,relativetowhichthemetrichasthediagonalformm=diag( 1;1;:::;1).Wewrite,splittingthespacetimecoordinatesxintothetimecomponentx0=tandspacecomponentsx=xi;:::xn,ds2=m0dxdx= dt2+(dx1)2+(dx2)2+:::+(dxn)2:(1)We
3、usestandardgeometricconventionsofloweringandraisingindicesrelativetom,anditsinversem 1=m,aswellastheusualsummationconventionoverrepeatedindices.Thecoordinatevectorelds@aredenotedby@.Thedual1forms@xaredx.Anarbitraryvectoreldcanbeexpressedasalinearcombinationofthecoordinatevectore
4、ldsX=X@withsmoothfunctionsX=X(x0;:::;xn).Anarbitrary1-formisalinearcombinationofthecoordinate1-formsA=Adx.Underachangeofcoordinatesx=x(x0)weobtain,@x@xds2=mdx0dx0;m0=m@x0@x0Twoinertialsystemsofcoordinatesareconnectedtoeachotherbytranslationsx=x0+x,Lorentztransformations,
5、(0)x0=x;m=m(2)andcombinationsofthetwox0=x+x.(0)Exercise.ShowthattheLorentztransformationsB(v)=B(v):R1+n !(0i)R1+n,with 1