Sergiu Klainerman_ Introduction to General Relativity

Sergiu Klainerman_ Introduction to General Relativity

ID:40700087

大小:379.69 KB

页数:53页

时间:2019-08-06

Sergiu Klainerman_ Introduction to General Relativity_第1页
Sergiu Klainerman_ Introduction to General Relativity_第2页
Sergiu Klainerman_ Introduction to General Relativity_第3页
Sergiu Klainerman_ Introduction to General Relativity_第4页
Sergiu Klainerman_ Introduction to General Relativity_第5页
资源描述:

《Sergiu Klainerman_ Introduction to General Relativity》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LECTURENOTESINGENERALRELATIVITY:Spring2009SergiuKlainermanDepartmentofMathematics,PrincetonUniversity,PrincetonNJ08544E-mailaddress:seri@math.princeton.eduCHAPTER1SpecialRelativity1.MinkowskiSpaceThen+1dimensionalMinkowskispace,whichwedenotebyRn+1,consistsofthemanifoldRn+1togetherw

2、ithaLorentzmetricmandadistinguishedsystemofcoordinatesx,=0;1;:::n,calledinertial,relativetowhichthemetrichasthediagonalformm=diag(1;1;:::;1).Wewrite,splittingthespacetimecoordinatesxintothetimecomponentx0=tandspacecomponentsx=xi;:::xn,ds2=m0dxdx=dt2+(dx1)2+(dx2)2+:::+(dxn)2:(1)We

3、usestandardgeometricconventionsofloweringandraisingindicesrelativetom,anditsinversem1=m,aswellastheusualsummationconventionoverrepeatedindices.Thecoordinatevector elds@aredenotedby@.Thedual1forms@xaredx.Anarbitraryvector eldcanbeexpressedasalinearcombinationofthecoordinatevector e

4、ldsX=X@withsmoothfunctionsX=X(x0;:::;xn).Anarbitrary1-formisalinearcombinationofthecoordinate1-formsA=Adx.Underachangeofcoordinatesx=x(x0)weobtain,@x@xds2=mdx0dx0;m0=m@x0@x0Twoinertialsystemsofcoordinatesareconnectedtoeachotherbytranslationsx=x0+x,Lorentztransformations,

5、(0)x0=x;m=m(2)andcombinationsofthetwox0=x+x.(0)Exercise.ShowthattheLorentztransformationsB(v)=B(v):R1+n!(0i)R1+n,with1

6、x,v=t+xandu0=t0x0,v0=t0+x0wehave,(1v)1=2u0=1u;v0=v;=(4)(1+v)1=2ShowthatB(v),jvj<1formsaoneparametergroupofdi eomorphismsoftheMinkowskispaceand ndtherelativisticlawofadditionofvelocities.341.SPECIALRELATIVITYDthe atcovariantderivativeofRn+1.Recallthatcovariantdi erentiationas

7、so-ciatestoanytwosmoothvector eldsX;Yanothervector eldDXYwhichveri esthefollowingrules.(1)Giventhreevector eldsX;Y;Zandscalarfunctionsa;bwehaveDaX+bYZ=aDXZ+bDYZDX(fY)=X(f)Y+fDXY(2)Foranyvector eldsX;Y;Z,Xm(Y;Z)=m(DXY;Z)+m(X;DYZ)Givenanarbitrary1-formA=AdxwehaveD!=@!.AvectorXissaidt

8、obetimelike,nullorspacelik

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。