2008高考数学专题复习_解析几何题型与方法(文科)

2008高考数学专题复习_解析几何题型与方法(文科)

ID:40660338

大小:916.00 KB

页数:20页

时间:2019-08-05

2008高考数学专题复习_解析几何题型与方法(文科)_第1页
2008高考数学专题复习_解析几何题型与方法(文科)_第2页
2008高考数学专题复习_解析几何题型与方法(文科)_第3页
2008高考数学专题复习_解析几何题型与方法(文科)_第4页
2008高考数学专题复习_解析几何题型与方法(文科)_第5页
资源描述:

《2008高考数学专题复习_解析几何题型与方法(文科)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考数学专题复习解析几何题型与方法(文科)一、考点回顾1.直线(1).直线的倾斜角和斜率(2).直线的方程a.点斜式:;b.截距式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.(3).两直线的位置关系两条直线,有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.(4).简单的线性规划.①存在一定的限制条件,这些约束条件如果由x、y的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.②都有一个目标要求,就是要求依赖于x、y的某个函数(称为目标函数)达到最大值或

2、最小值.特殊地,若此函数是x、y的一次解析式,就称为线性目标函数.③求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题.2.圆(1).圆的定义(2).圆的方程a.圆的标准方程,b.圆的一般方程,c.圆的参数方程(3).直线与圆3.圆锥曲线(1).椭圆的性质(2)双曲线的性质(3).抛物线中的常用结论①过抛物线y2=2px的焦点F的弦AB长的最小值为2p②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是直线AB恒过定点(2

3、p,0)(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法).b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离c.直线与双曲线、抛物线有自己的特

4、殊性(2).a.求弦所在的直线方程b.根据其它条件求圆锥曲线方程(3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所在的直线方程(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称)5.二次曲线在高考中的应用二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。本文关注近年部分

5、省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。(2).重视二次曲线的标准方程和几何性质与导数的有机联系。(3).重视二次曲线性质与数列的有机结合。(4).重视解析几何与立体几何的有机结合。一、经典例题剖析考点一曲线(轨迹)方程的求法常见的求轨迹方程的方法:(1)单动点的轨迹问题——直接法(五步曲)+待定系数法(定义法);(2)双动点的轨迹问题——代入法;(3)多动点的轨迹问题——参数法+交轨法。例题1.已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1

6、)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程.解析:(1)两点确定一条直线;(2)利用平面几何知识,找出关系。答案:(1)由,可得由射影定理,得在Rt△MOQ中,,故,所以直线AB方程是(2)连接MB,MQ,设由点M,P,Q在一直线上,得由射影定理得即=1(**)把(*)及(**)消去a,并注意到,可得点评:合理应用平面几何知识,这是快速解答本题的关键所在。例题2.(湖北省十一校)在直角坐标平面中,△ABC的两个顶点为A(0,-1),B(0,1)平面内两点G、M同时满足:①,②==③∥(1)求顶点C的轨迹E的方程(2)设P、Q、R、N都在曲线E上,定点

7、F的坐标为(,0),已知∥,∥且·=0.求四边形PRQN面积S的最大值和最小值.分析:本例(1)要熟悉用向量的方式表达点特征;(2)要把握好直线与椭圆的位置关系,弦长公式,灵活的运算技巧是解决好本题的关键。解:(1)设C(x,y),,由①知,G为△ABC的重心,G(,)由②知M是△ABC的外心,M在x轴上由③知M(,0),由得化简整理得:(x≠0)。(2)F(,0)恰为的右焦点设PQ的斜率为k≠0且k≠±,则直线PQ的方程为y=k(x-)由设P(x1,y1),Q(x2,y2)则x1+x2=,x1·x2=则

8、PQ

9、=·=·=RN⊥PQ,把k换成得

10、RN

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。