资源描述:
《导数的几何意义(说课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数的几何意义郑伟和教材分析教法分析教学目标教学过程评价反思一.教材分析(1)教材的地位和作用(2)重点难点(3)课时安排一.教材分析导数是微积分的核心概念之一,有极其丰富的实际背景和广泛的应用。导数的几何意义是学生在学习了瞬时变化率就是导数之后的内容,通过这部分内容的学习,可以帮助学生更好的理解导数的概念及导数是研究函数的单调性、变化快慢和极值等性质最有效的工具,是本章的关键内容。(一)教材的地位和作用一.教材分析(二)重点与难点教学重点:导数几何意义的理解与应用教学难点:导数几何意义的推导思路一.教材分析导数的几何意义可安排两课时。本
2、节作为第一课时,重在探求曲线上某点处切线的斜率和导数的关系,理解导数的几何意义,体会几何意义在研究函数性质应用中的作用。(三)课时安排二.教法分析(一)学情分析(二)教学方法(三)学法分析二.教法分析(一)学情分析学生已经通过实例经历了由平均变化率到瞬时变化率刻画现实问题的过程,理解了瞬时变化率就是导数,体会了导数的思想和实际背景,已经具备一定的微分思想,但是对于导数在研究函数性质中有什么作用还不够理解,多数同学对此有相当的兴趣和积极性。学生在学习时可能会遇到以下困难,比如从割线到切线的过程中采用的逼近方法,理解导数就是曲线上某点的斜率等
3、等。二.教法分析(二)教学方法1、多媒体辅助教学借助多媒体教学手段引导学生发现切线斜率与该点导数值之间的关系,使问题变得直观,易于突破难点;利用多媒体向学生展示导数就是切线斜率的过程,体会逼近的思想方法。2、探究发现法教学让学生通过动手操作课件经历“实验、探索、论证、应用”的过程,体验从特殊到一般的认识规律,通过学生“动手、动脑、讨论、演练”增加学生的参与机会,增强参与意识,教给学生获取知识的途径,思考问题的方法,使学生真正成为教学主体。二.教法分析(三)学法分析自主、合作、探究借助多媒体技术创设丰富的教学情境,激发学生的学习动机,培养学
4、习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。引导学生动手操作课件,指导学生讨论交流从而发现规律,培养学生探究问题的习惯和意识以及勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。三.教学目标通过实验探求和理解导数的几何意义,理解导数在研究函数性质中的作用,培养学生分析、抽象、概括等思维能力。知识与技能三.教学目标过程与方法在寻找切线新定义的过程中,使学生通过有限认识无限,发现数学的美;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。三.教学目标情感态度与价值观在导数几何
5、意义的推导过程中,渗透逼近和以直代曲的思想,使学生了解近似与精确间的辨证关系,激发学生勇于探索、勤于思考的精神;通过讨论、交流、合作、实验操作等活动激发学生学习数学的兴趣;培养学生合作学习和数学交流的能力。四.教学过程(一)教学流程图(二)教学过程与设计思路归纳小结反思建构合作学习探索新知例题分析随堂演练创设情境铺垫导入教学流程图先来复习导数的概念定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+Δx)-f(x0).如果当Δx0时,Δy/Δx的极限存在,这个极限就叫做函
6、数f(x)在点x0处的导数(或变化率)记作即:创设情境铺垫导入下面来看导数的几何意义:βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+Δx,y0+Δy)为P邻近一点,PQ为C的割线,PM//x轴,QM//y轴,β为PQ的倾斜角.斜率!合作学习探索新知PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直
7、线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。割线趋近于确定的位置的直线定义为切线.曲线与直线相切,并不一定只有一个公共点。例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.QPy=x2+1xy-111OjMDyDx因此,切线方程为y-2=2(x
8、-1),即y=2x.求曲线在某点处的切线方程的基本步骤:先利用切线斜率的定义求出切线的斜率,然后利用点斜式求切线方程.例题分析随堂演练例2:如图已知曲线,求:(1)点P处的切线的斜率;(2)点