资源描述:
《对坐标曲线积分(IV)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节一、对坐标的曲线积分的概念与性质二、对坐标的曲线积分的计算法三、两类曲线积分之间的联系对坐标的曲线积分第十章一、对坐标的曲线积分的概念与性质1.引例:变力沿曲线所作的功.设一质点受如下变力作用在xoy平面内从点A沿光滑曲线弧L移动到点B,求移“大化小”“常代变”“近似和”“取极限”变力沿直线所作的功解决办法:动过程中变力所作的功W.1)“大化小”.2)“常代变”把L分成n个小弧段,有向小弧段近似代替,则有所做的功为F沿则用有向线段上任取一点在3)“近似和”4)“取极限”(其中为n个小弧段的最大长度)2.定义.设L
2、为xoy平面内从A到B的一条有向光滑弧,若对L的任意分割和在局部弧段上任意取点,都存在,在有向曲线弧L上对坐标的曲线积分,则称此极限为函数或第二类曲线积分.其中,L称为积分弧段或积分曲线.称为被积函数,在L上定义了一个向量函数极限记作若为空间曲线弧,记称为对x的曲线积分;称为对y的曲线积分.若记,对坐标的曲线积分也可写作类似地,3.性质(1)若L可分成k条有向光滑曲线弧(2)用L-表示L的反向弧,则则定积分是第二类曲线积分的特例.说明:对坐标的曲线积分必须注意积分弧段的方向!二、对坐标的曲线积分的计算法定理:在有向光滑
3、弧L上有定义且L的参数方程为则曲线积分连续,证明:下面先证存在,且有对应参数设分点根据定义由于对应参数因为L为光滑弧,同理可证特别是,如果L的方程为则对空间光滑曲线弧:类似有例1.计算其中L为沿抛物线解法1取x为参数,则解法2取y为参数,则从点的一段.例2.计算其中L为(1)半径为a圆心在原点的上半圆周,方向为逆时针方向;(2)从点A(a,0)沿x轴到点B(–a,0).解:(1)取L的参数方程为(2)取L的方程为则则例3.计算其中L为(1)抛物线(2)抛物线(3)有向折线解:(1)原式(2)原式(3)原式例4.设在力场
4、作用下,质点由沿移动到解:(1)(2)的参数方程为试求力场对质点所作的功.其中为例5.求其中从z轴正向看为顺时针方向.解:取的参数方程三、两类曲线积分之间的联系设有向光滑弧L以弧长为参数的参数方程为已知L切向量的方向余弦为则两类曲线积分有如下联系机动目录上页下页返回结束类似地,在空间曲线上的两类曲线积分的联系是令记A在t上的投影为二者夹角为例6.设曲线段L的长度为s,证明续,证:设说明:上述证法可推广到三维的第二类曲线积分.在L上连例7.将积分化为对弧长的积分,解:其中L沿上半圆周1.定义2.性质(1)L可分
5、成k条有向光滑曲线弧(2)L-表示L的反向弧对坐标的曲线积分必须注意积分弧段的方向!内容小结3.计算•对有向光滑弧•对有向光滑弧4.两类曲线积分的联系•对空间有向光滑弧:原点O的距离成正比,思考与练习1.设一个质点在处受恒指向原点,沿椭圆此质点由点沿逆时针移动到提示:(解见P139例5)F的大小与M到原F的方向力F的作用,求力F所作的功.思考:若题中F的方向改为与OM垂直且与y轴夹锐角,则2.已知为折线ABCOA(如图),计算提示:备用题1.解:线移动到向坐标原点,其大小与作用点到xoy面的距离成反比.沿直求F所作的功
6、W.已知F的方向指一质点在力场F作用下由点2.设曲线C为曲面与曲面从ox轴正向看去为逆时针方向,(1)写出曲线C的参数方程;(2)计算曲线积分解:(1)(2)原式=令利用“偶倍奇零”