Charles Siegel

Charles Siegel

ID:40383623

大小:741.83 KB

页数:120页

时间:2019-08-01

Charles Siegel_第1页
Charles Siegel_第2页
Charles Siegel_第3页
Charles Siegel_第4页
Charles Siegel_第5页
资源描述:

《Charles Siegel》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1AneVarietiesWewillbeginfollowingKempf'sAlgebraicVarieties,andeventuallywilldothingsmorelikeinHartshorne.Wewillalsousevarioussourcesforcommutativealgebra.Whatisalgebraicgeometry?Classically,itisthestudyofthezerosetsofpolynomials.Wewillnow xsomenotation.kwillbesome xedalgebraicallyclose

2、d eld,anyringiscommutativewithidentity,ringhomomorphismspreserveidentity,andak-algebraisaringRwhichcontainsk(i.e.,wehavearinghomomorphism:k!R).PRanidealisprimei R=Pisanintegraldomain.AlgebraicSetsWede neanen-space,An=kn=f(a;:::;a):a2kg.1niAnyf=f(x;:::;x)2k[x;:::;x]de nesafunctionf:An

3、!k:1n1n(a1;:::;an)7!f(a1;:::;an).ExerciseIff;g2k[x1;:::;xn]de nethesamefunctionthenf=gaspolynomials.De nition1.1(AlgebraicSets).LetSk[x1;:::;xn]beanysubset.ThenV(S)=fa2An:f(a)=0forallf2Sg.AsubsetofAniscalledalgebraicifitisofthisform.e.g.,apointf(a1;:::;an)g=V(x1a1;:::;xnan).Exercises

4、1.I=(S)istheidealgeneratedbyS.ThenV(S)=V(I).2.IJ)V(J)V(I).P3.V([I)=V(I)=V(I).4.V(IJ)=V(IJ)=V(I)[V(J).De nition1.2(ZariskiTopology).Wecande neatopologyonAnbyde ningtheclosedsubsetstobethealgebraicsubsets.UAnisopeni AnnU=V(S)forsomeSk[x1;:::;xn].Exercises3and4implythatthisisatopolo

5、gy.TheclosedsubsetsofA1arethe nitesubsetsandA1itself.De nition1.3(IdealofaSubset).IfWAnisanysubset,thenI(W)=ff2k[x1;:::;xn]:f(a)=0foralla2WgFacts/Exercises1.VW)I(W)I(V)2.I(;)=(1)=k[x1;:::;xn]3.I(An)=(0).1De nition1.4(AneCoordinateRing).WAnisalgebraic.ThenA(W)=k[W]=k[x1;:::;xn]=I(W)

6、Wecanthinkofthisastheringofallpolynomialfunctionsf:W!k.De nition1.5(RadicalIdeal)p.LetRbearingandIRbeanideal,thentheradicalofIistheidealI=ff2R:fi2Iforsomei2NgpWecallIaradicalidealifI=I.ExercisepIfIisanideal,thenIisaradicalideal.Proposition1.1.WAnanysubset,thenI(W)isaradicalideal.pProo

7、f.WehavethatI(W)I(W).pSupposef2I(W).Thenfi2Iforsomei.Thatis,foralla2W,fi(a)=0.Thus,f(a)m=0=f(a).Andso,f(a)2I.Exercises1.Sk[x1;:::;xn],thenSI(V(S)).2.WAnthenWV(I(W)).3.WAnisanalgebraicsubset,thenW=V(I(W)).pp4.Ik[x1;:::;xn]isanyideal,thenV(I)=V(I)andII(V(I))Theorem1.2(Nul

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。