An Introduction to Chern-Simons Theory

An Introduction to Chern-Simons Theory

ID:40367974

大小:205.48 KB

页数:7页

时间:2019-08-01

An Introduction to Chern-Simons Theory_第1页
An Introduction to Chern-Simons Theory_第2页
An Introduction to Chern-Simons Theory_第3页
An Introduction to Chern-Simons Theory_第4页
An Introduction to Chern-Simons Theory_第5页
资源描述:

《An Introduction to Chern-Simons Theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnIntroductiontoChern-SimonsTheory1BasicDe nitionsRecallthataprincipalG-bundleEoverBisa brationwith brebeingaLiegroupGandthereisafreeright(resp.left)actiononthetotalspacebyelementsofGsuchthatthisisfreeandtransitiveoneach bre.Themap:E!Binducesd:TE!TB,whereTeElocallysplitsinto

2、T(e)BT1Gbylocaltriviality.Thus,kerdisT1Gwhichcanbecanonicallyidenti edwithg.Forsuchabundle,aconnectionisa1-formonEtakingvaluesingandsatisfying(1.1)R=(ad)1gg(1.2)(v)=vg;v2kerd:HeretherightactionRgactsbygontherightandvgreferstotheidenti cationofvwithanelementvgofgasme

3、ntionedbefore.Inparticular,thismeansthatifxdenotetheMaurer-CartanformonEx=Gandix:Ex,!E,thenix()=x.Alsorecallthestructureequation1(1.3)dx+[x;x]=0:2ItfollowsfromelementaryobstructiontheorythatProposition1.1.LetE!BbeasabovesuchthatGisconnected,simplyconnectedandcompact.Let

4、Bbeamanifoldofdimensionatmost3.Thenthebundleistrivial.Inwhatfollows,letMbeaclosed,connectedandoriented3-manifoldandletEbeaprincipalSU(2)-bundleonM.We xatrivializationonE.Leti(M;su)=(M;^iTM(Msu))22denotethespaceofformsonMwithvaluesinsu2.Therearetwoobviouswaystoextenda21(M;su

5、2)toa1-formonE=MSU(2):(1)using(1.1)anddeclaringittobetheMaurer-Cartanformoneach bre,(2)justextendtoeachcopyofMfggby(1.1).Thus,thespaceofconnectionsonany(principal)SU(2)-bundleoverM(makinguseof(1)above)isjustA(M)=1(M;su2)-thespaceofsu2-valued1-formsonM.Thecurvatureofaconnecti

6、ona2A(M)isde nedtobe(1.4)F=da+a^a22(M;su):a2Weobserveherethat11(a^a)(X;Y)=a(X)a(Y)a(Y)a(X)=[a(X);a(Y)]221and(1.5)RF=adgag1Fa(1.6)iF=0:xaThelastequationfollowsfrom(1.3).Wecallaconnection atifthecurvatureiszero.TheBianchiidentityfollowsbydi erentiatingFa:(1.7)dFa+[a;Fa]=0:

7、Introducethecovariantderivative(1.8)da=d+ad(a):Thisinducesthecomplex0da1da2da3(1.9)(M;su2)!(M;su2)!(M;su2)!(M;su2):Thefailureoftheabovetobeachaincomplex,i.e.,da2=0,ismeasuredbythe atnessofasinceda2=Fa.22TheChern-SimonsfunctionalDe nition2.1.Fora2A(M),chooseanoriented4-manifold

8、WwhichboundsMandcollarneighbourhoodoftheboundary@WU=M[0;1]:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。