资源描述:
《Multimodal learning for view-based 3D object classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Neurocomputing195(2016)23–29ContentslistsavailableatScienceDirectNeurocomputingjournalhomepage:www.elsevier.com/locate/neucomMultimodallearningforview-based3Dobjectclassificationa,ba,ba,b,nFuhaiChen,RongrongJi,LiujuanCaoaFujianKeyLaboratoryofSensingandComputingforSmartCity,ChinabSchoolofInformatio
2、nScienceandEngineering,XiamenUniversity,Xiamen,Fujian361005,ChinaarticleinfoabstractArticlehistory:Nowadaysbyemployingmanymachinelearningandpatternclassificationmethodsinobjectclassification,Received7April2015theview-based3Dobjectclassification,anemergingresearchtopic,becomesamajorresearchfocus.Rece
3、ivedinrevisedformHowever,mostexistingresearchesfocusononlyasinglemodalityofimagefeaturesfortheobjectclas-25August2015sification,althoughrecentstudieshaveshownthatdifferentkindsoffeaturesmayprovidecomplementaryAccepted19September2015informationfor3Dobjectclassification.Inthispaper,weproposethemultim
4、odalsupportvectormachineAvailableonline27February2016tocombinethreemodalitiesofimagefeatures,i.e.,Siftdescriptor,OutlineFouriertransformdescriptor,andKeywords:ZernikeMomentsdescriptortodiscriminatethemultipleclassesofobject,whereeachkernelcorrespondsView-based3Dobjecttoeachmodality.Inthisway,noto
5、nlytheindependenceofeachmodalitybutalsotheinterrelationMulti-taskfeatureselectionbetweenthemarebothtakenintoconsidered.Andwefurtheremploymulti-taskfeatureselectionviatheMultimodalSVMl2-normregularizationafterfeatureextractiontoimprovetheperformanceoffinalclassification.TheexperimentsconductedinETH-
6、80imagesetdemonstratetheeffectivenessandsuperiorityofourmethod.&2016ElsevierB.V.Allrightsreserved.1.Introductionfeaturedescriptorrepresentingtheobjectshouldbedistinguishedfromotherobjectinthedifferentclassesasfaraspossible.However,asNowadayswiththerapiddevelopmentofwebsitesandtheweknow,noneofthef
7、eaturedescriptorissuitableperfectlyforthewidespreadpopularityofmobiledevices,view-based3Dobjectclassificationofallclasses.Forexample,thecolorhistogrammayclassificationandretrievalhavebeendrawingmoreandmoreperformwelloncl