欢迎来到天天文库
浏览记录
ID:40266197
大小:3.64 MB
页数:17页
时间:2019-07-29
《五年级奥数第5讲--等积变形》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、白汀水小学奥数三角形的等积变形DABC相似等相白汀水三角形的等积变形一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系。这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小)。同样若三角形的高不变,底越大(小),三角形面积也就越大(小)。这说明;当三角形的面积变化时,它的底和高之中至少有一个要发生变化。但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.当三角形的底和高的积保持不变,三角形的面积就不变。只有当三角形底和高的乘积
2、变化时,三角形的面积才发生变化。三角形面积的计算公式:三角形面积=底×高÷2底高白汀水①等底等高的两个三角形面积相等.它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相等.同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.为便于实际问题的研究,我们还会常常用到以下结论:③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.ABCDE白汀水例如在下图中,△ABC与
3、△DBC的底相同(它们的底都是BC),它所对的两个顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形的面积相等.DABC白汀水例如下图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.上述结论,是我们研究三角形等积变形的重要依据.CABDHE白汀水例1用四种不同的方法,把任意一个三角形分成四个面积相等的三角形.方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即△ABD与△ADC等积.然后取AB、AC中
4、点E、F,并连结DE、DF.从而得到四个等积三角形,即△ADE、△BDE、△DCF、△ADF等积.ABCDEF方法1:如左图,将BC四等分,(BD=DE=EF=FC=BC/4)、连结AD、AE、AF,则△ABD、△ADE、△AEF、△AFC等积.BACDEF白汀水方法3:如左图,取△ABC三条边的中点D、E、F连结DE、DF、EF,则△BED、△EAF、△DFC、△EFD等积.BACDEF方法4:如右图,取点D,使BD=BC/3,连结AD、取点E、F,使AE=EF=FD,则△ABD、△CAE、△CEF、△CFD等积.BACDEF白汀水例2用三种不同的方法将任意一
5、个三角形分成三个小三角形,使它们的面积比为及1∶3∶4.方法2:如上右图,先取BC中点,再取AB的1/4分点,连结AD、DE,从而得到三个三角形:△ADE、△BDE、△ACD.其面积比为1∶3∶4.方法1:如上左图,将BC边八等分,取1∶3∶4的分点D、E,连结AD、AE,从而得到△ABD、△ADE、△AEC的面积比为1∶3∶4.BACEDBACDE134134白汀水方法2:如下图,先取AB中点D,再连结CD,再取CD上的1/4分点E,连结AE,从而得到三个三角形:△ACE、△ADE、△BCD.其面积比为1∶3∶4.BACDE当然本题还有许多种其他分法,同学们可
6、以自己寻找解决.134白汀水例3如右图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD面积相等.证明:∵△ABC与△DBC等底等高,∴S△ABC=S△DBC又∵S△AOB=S△ABC—S△BOCS△DOC=S△DBC—S△BOC∴S△AOB=S△COD.DABCO白汀水例4如右图,把四边形ABCD改成一个等积的三角形.分析本题有两点要求,一是把四边形改成一个三角形,二是改成的三角形与原四边形面积相等.我们可以利用三角形等积变形的方法,如上图,把顶点A移到CB的延长线上的A′处,△A′BD与△ABD面积相等,从而△A′DC面积与原四边形A
7、BCD面积也相等.这样就把四边形ABCD等积地改成了三角形△A′DC.问题是A′位置的选择是依据三角形等积变形原则.过A作一条和DB平行的直线与CB的延长线交于A′点。DCBAA′解:①连结BD;②过A作BD的平行线,与CB的延长线交于A′.③连结A′D,则△A′CD与四边形ABCD等积.白汀水例5如右图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE的面积为1平方厘米.求三角形ABC的面积.解法1:连结BD,在△ABD中∵BE=3AE,∴S△ABD=4S△ADE=4(平方厘米).在△ABC中,∵CD=2AD,∴S△ABC=3S△ABD=3×4=12(
8、平方厘米).解法2:连结
此文档下载收益归作者所有