A Structured Self-attentive Sentence Embedding

A Structured Self-attentive Sentence Embedding

ID:40254594

大小:3.53 MB

页数:15页

时间:2019-07-29

A Structured Self-attentive Sentence Embedding_第1页
A Structured Self-attentive Sentence Embedding_第2页
A Structured Self-attentive Sentence Embedding_第3页
A Structured Self-attentive Sentence Embedding_第4页
A Structured Self-attentive Sentence Embedding_第5页
资源描述:

《A Structured Self-attentive Sentence Embedding》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PublishedasaconferencepaperatICLR2017ASTRUCTUREDSELF-ATTENTIVESENTENCEEMBEDDINGZhouhanLinz,MinweiFeng,CiceroNogueiradosSantos,MoYu,BingXiang,BowenZhou&YoshuaBengiozyIBMWatsonzMontrealInstituteforLearningAlgorithms(MILA),UniversitedeMontr´eal´yCIFARSeniorFellowlin.zhouhan@gmail.co

2、mfmfeng,cicerons,yum,bingxia,zhoug@us.ibm.comABSTRACTThispaperproposesanewmodelforextractinganinterpretablesentenceembed-dingbyintroducingself-attention.Insteadofusingavector,weusea2-Dmatrixtorepresenttheembedding,witheachrowofthematrixattendingonadifferentpartofthesentence.Wealsopropose

3、aself-attentionmechanismandaspecialregularizationtermforthemodel.Asasideeffect,theembeddingcomeswithaneasywayofvisualizingwhatspecificpartsofthesentenceareencodedintotheembedding.Weevaluateourmodelon3differenttasks:authorprofiling,senti-mentclassificationandtextualentailment.Resultsshowthat

4、ourmodelyieldsasignificantperformancegaincomparedtoothersentenceembeddingmethodsinallofthe3tasks.1INTRODUCTIONMuchprogresshasbeenmadeinlearningsemanticallymeaningfuldistributedrepresentationsofindividualwords,alsoknownaswordembeddings(Bengioetal.,2001;Mikolovetal.,2013).Ontheotherhand,muc

5、hremainstobedonetoobtainsatisfyingrepresentationsofphrasesandsentences.Thosemethodsgenerallyfallintotwocategories.Thefirstconsistsofuniversalsentenceembeddingsusuallytrainedbyunsupervisedlearning(Hilletal.,2016).ThisincludesSkipThoughtvectors(Kirosetal.,2015),ParagraphVector(Le&Mikolov,20

6、14),recursiveauto-encoders(Socheretal.,2011;2013),SequentialDenoisingAutoencoders(SDAE),FastSent(Hilletal.,2016),etc.Theothercategoryconsistsofmodelstrainedspecificallyforacertaintask.Theyareusuallycombinedwithdownstreamapplicationsandtrainedbysupervisedlearning.Onegenerallyfindsthatspecifi

7、callytrainedsentenceembeddingsperformbetterthangenericones,althoughgenericarXiv:1703.03130v1[cs.CL]9Mar2017onescanbeusedinasemi-supervisedsetting,exploitinglargeunlabeledcorpora.Severalmodelshavebeenproposedalongthisline,byusingrecurrentnetworks(Hochreiter&Schmidhuber,199

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。