欢迎来到天天文库
浏览记录
ID:34168510
大小:197.09 KB
页数:12页
时间:2019-03-03
《spectral clustering and embedding with hidden markov models》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、SpectralClusteringandEmbeddingwithHiddenMarkovModelsTonyJebara,YingboSong,andKapilThadanifjebara,yingbo,kapilg@cs.columbia.eduDepartmentofComputerScience,ColumbiaUniversity,NewYorkNY10027,USAAbstract.Clusteringhasrecentlyenjoyedprogressviaspectralmeth-od
2、swhichgroupdatausingonlypairwiseanitiesandavoidparametricassumptions.Whilespectralclusteringofvectorinputsisstraightfor-ward,extensionstostructureddataortime-seriesdataremainlessex-plored.Thispaperproposesaclusteringmethodfortime-seriesdatathatcouplesno
3、n-parametricspectralclusteringwithparametrichiddenMarkovmodels(HMMs).HMMsaddsomebenecialstructuralandparametricassumptionssuchasMarkovpropertiesandhiddenstatevariableswhichareusefulforclustering.Thisarticleshowsthatus-ingprobabilisticpairwisekernelestim
4、atesbetweenparametricmodelsprovidesimprovedexperimentalresultsforunsupervisedclusteringandvisualizationofrealandsyntheticdatasets.Resultsarecomparedwithafullyparametricbaselinemethod(amixtureofhiddenMarkovmodels)andanon-parametricbaselinemethod(spectralc
5、lusteringwithnon-parametrictime-serieskernels).1IntroductionThispaperexploresunsupervisedlearninginthetime-seriesdomainusingacom-binationofparametricandnon-parametricmethods.Someparametricassump-tions,suchasMarkovassumptionsandhiddenstateassumptions,areq
6、uiteusefulfortime-seriesdata.However,itisalsoadvantageoustoremainnon-parametricandagnosticabouttheoverallshapethatacollectionoftime-seriesdataforms.Thispaperprovidessurprisingempiricalevidencethatasemi-parametric[1,2]methodcanoutperformbothfullyparametri
7、cmethodsofdescribingmultipletime-seriesobservationsandfullynon-parametricmethods.Theseimprovementsincludebetterclusteringperformanceaswellasbetterembeddingandvisual-izationoverexistingstate-of-the-arttime-seriestechniques.Thereareavarietyofparametricandn
8、on-parametricalgorithmsfordiscov-eringclusterswithinadataset;however,theapplicationofthesetechniquesforclusteringsequentialdatasuchastime-seriesdataposesanumberofadditionalchallenges.Time-seriesdatahasinherentstructurewhic
此文档下载收益归作者所有