欢迎来到天天文库
浏览记录
ID:40185695
大小:317.00 KB
页数:34页
时间:2019-07-24
《定型数据的建模分析之一》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十三讲定型数据的建模分析之一——列联表、c2检验和对数线性模型三维列联表(关于某项政策调查所得结果:table7.txt)观点:赞成观点:不赞成低收入中等收入高收入低收入中等收入高收入男201055810女25157279列联表前面就是一个所谓的三维列联表(contingencytable).这些变量中每个都有两个或更多的可能取值。这些取值也称为水平;比如收入有三个水平,观点有两个水平,性别有两个水平等。该表为3×2×2列联表在下面SPSS数据中,表就和上面的不同,收入的“低”、“中”、“高”用代码1、2、3代表;性别的“女”、“
2、男”用代码0、1代表;观点“赞成”和“不赞成”用1、0代表。有些计算机数据对于这些代码的形式不限(可以是数字,也可以是字符串)。列联表列联表的中间各个变量不同水平的交汇处,就是这种水平组合出现的频数或计数(count)。二维的列联表又称为交叉表(crosstable)。列联表可以有很多维。维数多的叫做高维列联表。注意前面这个列联表的变量都是定性变量;但列联表也会带有定量变量作为协变量。二维列联表的检验研究列联表的一个主要目的是看这些变量是否相关。比如前面例子中的收入和观点是否相关。这需要形式上的检验二维列联表的检验下面表是把该例的三维表
3、简化成只有收入和观点的二维表(这是SPSS自动转化的:Analyze-DescriptiveStatistics-Crosstabs-…..).二维列联表的检验对于上面那样的二维表。我们检验的零假设和备选假设为H0:观点和收入这两个变量不相关;H1:这两个变量相关。这里的检验统计量在零假设下有(大样本时)近似的c2分布。当该统计量很大时或p-值很小时,就可以拒绝零假设,认为两个变量相关。二维列联表的检验实际上有不止一个c2检验统计量。包括Pearsonc2统计量和似然比(likelihoodratio)c2统计量;它们都有渐近的c2分布
4、。对于我们的数据,根据计算可以得到(对于这两个统计量均有)p-值小于0.001。因此可以说,收入高低的确影响观点。Pearsonc2统计量似然比c2统计量二维列联表的检验刚才说,这些c2统计量是近似的,那么有没有精确的统计量呢?当然有。这个检验称为Fisher精确检验;它不是c2分布,而是超几何分布。对本问题,计算Fisher统计量得到的p-值也小于0.001。Fisher精确检验的又一例子二维列联表的检验聪明的同学必然会问,既然有精确检验为什么还要用近似的c2检验呢?这是因为当数目很大时,超几何分布计算相当缓慢(比近似计算会差很多倍的
5、时间);而且在计算机速度不快时,根本无法计算。因此人们多用大样本近似的c2统计量。而列联表的有关检验也和c2检验联系起来了。具体运算:先加权,加权之后,按照次序选Analyze-DescriptiveStatistics-Crosstabs。在打开的对话框中,把opinion和income分别选入Row(行)和Column(列);至于哪个放入行或哪个放入列是没有关系的。如果要Fisher精确检验则可以点Exact,另外在Statistics中选择Chi-square,以得到c2检验结果。最后点击OK之后,就得到有关Pearsonc2统计
6、量、似然比c2统计量以及Fisher统计量的输出了(这里的Sig就是p-值)。下面就是SPSS计算机对于这个问题的输出高维列联表和(多项分布)对数线性模型前面例子原始数据是个三维列联表,其检验和对两维类似。但高维列联表在计算机软件的选项上有所不同,而且可以构造一个所谓(多项分布)对数线性模型(loglinearmodel)来进行分析。利用对数线性模型的好处是不仅可以直接进行预测,而且可以增加定量变量作为模型自变量的一部分。对数线性模型现在简单直观地通过二维表介绍一下对数线性模型,假定不同的行代表第一个变量的不同水平,而不同的列代表第二个
7、变量的不同水平。用mij代表二维列联表第i行,第j列的频数。人们常假定这个频数可以用下面的公式来确定:这就是所谓的对数线性模型。这里ai为行变量的第i个水平对ln(mij)的影响,而bj为列变量的第j个水平对ln(mij)的影响,这两个影响称为主效应(maineffect);eij代表随机误差。(多项分布)对数线性模型该模型看上去和回归模型很象,但由于分布假设不同,不能简单地用线性回归的方法来套用(和Logistic回归类似);计算过程也很不一样(把这个留给计算机去操心)。只要利用数据来拟合这个模型就可以得到对于参数m的估计(没有意义)
8、,以及ai和bj的“估计”。有了估计的参数,就可以预测出任何i,j水平组合的频数mij了(通过对数)。(多项分布)对数线性模型注意,这里的估计之所以打引号是因为一个变量的各个水平的影响是相对的,只有事先固定
此文档下载收益归作者所有