The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients

The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients

ID:40104590

大小:1.28 MB

页数:22页

时间:2019-07-21

The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第1页
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第2页
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第3页
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第4页
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第5页
资源描述:

《The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheJournalofRealEstateFinanceandEconomics,30:1,33–53,2005#2005SpringerSciences+BusinessMedia,Inc.ManufacturedinTheNetherlands.TheUSHousingMarket:AssetPricingForecastsUsingTimeVaryingCoefficientsHANYS.GUIRGUISManhattanCollege,Riverdale,NY,USAE-mail:hany.guirguis@manhattan.eduCHRISTOSI.GIANNIKOSCol

2、umbiaBusinessSchool,ColumbiaUniversityandBaruchCollege,TheCityUniversityofNewYork,NY,USARANDYI.ANDERSONCollegeofBusinessAdministration,FloridaInternationalUniversity,Miami,FL,USAAbstractTheUShousingmarkethasexperiencedsignificantcyclicalvolatilityoverthelasttwenty-fiveyearsduetomajorstructuralcha

3、ngesandeconomicfluctuations.Inaddition,thehousingmarketisgenerallyconsideredtobeweakforminefficient.Housesarerelativelyilliquid,exceptionallyheterogeneous,andareassociatedwithlargetransactionscosts.Assuch,pastresearchhasshownthatitispossibletopredict,atleastpartially,thetimepathofhousingprices.Th

4、eabilitytopredicthousingpricesisimportantsuchthatinvestorscanmakebetterassetallocationdecisions,includingthepricingandunderwritingofmortgages.MostofthepriorstudiesexaminingtheUShousingmarkethaveemployedconstantcoefficientapproachestoforecasthousepricemovements.However,thisapproachisnotoptimalasan

5、examinationofdatarevealssubstantialsub-sampleparameterinstability.Toaccountfortheparameterinstability,weemployalternativeestimationmethodologieswheretheestimatedparametersareallowedtovaryovertime.TheresultsprovidestrongempiricalevidenceinfavorofutilizingtherollingGeneralizedAutoregressiveConditio

6、nalHeteroskedastic(GARCH)ModelandtheKalmanFilterwithanAutoregressivePresentation(KAR)fortheparameters’timevariation.Lastly,weprovideout-of-sampleforecastsanddemonstratetheprecisionofourapproach.KeyWords:houseprices,Kalmanfilter,rollingGARCH,rollingVECM1.Introduction1.1.OverviewBothacademicsandpra

7、ctitionersareinterestedinunderstandingthedynamicsofthehousingmarketduetoitssignificantimpactonthewholeeconomy.Infact,thehousingsectorconstitutesasignificantshareoftheGDPanditisthelargestcomponentofhouseholdwealthintheU

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。