THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC

THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC

ID:40104253

大小:564.99 KB

页数:56页

时间:2019-07-21

THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC _第1页
THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC _第2页
THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC _第3页
THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC _第4页
THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC _第5页
资源描述:

《THE PRIMES CONTAIN ARBITRARILY LONG ARITHMETIC 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、THEPRIMESCONTAINARBITRARILYLONGARITHMETICPROGRESSIONSBENGREENANDTERENCETAOAbstract.Weprovethattherearearbitrarilylongarithmeticprogressionsofprimes.Therearethreemajoringredients.ThefirstisSzemer´edi’stheorem,whichassertsthatanysubsetoftheintegersofpositivedensitycontainsprogressionsofar

2、bitrarylength.Thesecond,whichisthemainnewingredientofthispaper,isacertaintrans-ferenceprinciple.ThisallowsustodeducefromSzemer´edi’stheoremthatanysubsetofasufficientlypseudorandomset(ormeasure)ofpositiverelativedensitycontainsprogressionsofarbitrarylength.Thethirdingredientisarecentresul

3、tofGoldstonandYıldırım,whichwereproducehere.Usingthis,onemayplace(alargefractionof)theprimesinsideapseudorandomsetof“almostprimes”(ormoreprecisely,apseudorandommeasureconcentratedonalmostprimes)withpositiverelativedensity.1.IntroductionItisawell-knownconjecturethattherearearbitrarilylo

4、ngarithmeticprogressionsofprimenumbers.Theconjectureisbestdescribedas“classical”,ormaybeeven“folklore”.InDickson’sHistoryitisstatedthataround1770LagrangeandWaringinvestigatedhowlargethecommondifferenceofanarithmeticprogressionofLprimesmustbe,anditishardtoimaginethattheydidnotatleastwond

5、erwhethertheirresultsweresharpforallL.Itisnotsurprisingthattheconjectureshouldhavebeenmade,sinceasimpleheuristicbasedontheprimenumbertheoremwouldsuggestthatthereare≫N2/logkNk-tuplesofprimesp1,...,pkinarithmeticprogression,eachpibeingatmostN.HardyandLittlewood[24],intheirfamouspaperof19

6、23,advancedaverygeneralconjecturewhich,asaspecialcase,containsthehypothesisthatthenumberofsuchk-termprogressionsisasymptoticallyCN2/logkNforacertainexplicitnumericalfactorC>0(wedokknotcomeclosetoestablishingthisconjecturehere,obtaininginsteadalowerbound(γ(k)+o(1))N2/logkNforsomeverysma

7、llγ(k)>0).arXiv:math/0404188v6[math.NT]23Sep2007ThefirsttheoreticalprogressontheseconjectureswasmadebyvanderCorput[42](seealso[8])who,in1939,usedVinogradov’smethodofprimenumbersumstoestablishthecasek=3,thatistosaythatthereareinfinitelymanytriplesofprimesinarithmeticprogression.However,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。