Support vector machine as an efficient framework for stock market volatility forecasting

Support vector machine as an efficient framework for stock market volatility forecasting

ID:40102746

大小:194.77 KB

页数:14页

时间:2019-07-21

Support vector machine as an efficient framework for stock market volatility forecasting _第1页
Support vector machine as an efficient framework for stock market volatility forecasting _第2页
Support vector machine as an efficient framework for stock market volatility forecasting _第3页
Support vector machine as an efficient framework for stock market volatility forecasting _第4页
Support vector machine as an efficient framework for stock market volatility forecasting _第5页
资源描述:

《Support vector machine as an efficient framework for stock market volatility forecasting 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CMS(2006)3:147160DOI10.1007/s10287-005-0005-5ORIGINALPAPERSupportvectormachineasanefficientframeworkforstockmarketvolatilityforecastingValeriyV.Gavrishchaka·SupriyaBanerjeePublishedonline:16February2006©Springer2006AbstractAdvantagesandlimitationsoftheexistingmodelsfor

2、practicalforecastingofstockmarketvolatilityhavebeenidentified.Supportvectormachine(SVM)havebeenpro-posedasacomplimentaryvolatilitymodelthatiscapabletoextractinformationfrommulti-scaleandhigh-dimensionalmarketdata.PresentedresultsforSP500indexsuggestthatSVMcanefficientl

3、yworkwithhigh-dimensionalinputstoaccountforvolatilitylong-memoryandmultiscaleeffectsandisoftensuperiortothemain-streamvolatilitymodels.SVM-basedframeworkforvolatilityforecastingisexpectedtobeimportantinthedevelopmentofthenovelstrategiesforvolatilitytrading,advancedris

4、kmanagementsystems,andotherappli-cationsdealingwithmulti-scaleandhigh-dimensionalmarketdata.1.IntroductionAvailabilityofhigh-resolutionandmulti-sourcedataincreasesinmanyfieldsofpracticalinterestincludingfinancialindustry.However,itiswell-knownthatthemajorityofadvancedst

5、atisticalandmachinelearningalgorithms,includingneuralnetworks(NN),canencoun-terasetofproblemscalleddimensionalitycursewhenappliedtohigh-dimensionaldata(Bishop1995).Nonstationarityofthetimeseriescanalsoimposesignificantlimitationsondataavailablefortrainingthatoftenleads

6、topoorgeneralizationabilityofthemodel.Thelatterfeatureisespeciallyrelevantforfinancialapplications.Apromisingalgorithmthatcantoleratehigh-dimensionalandincompletedataissupportvectormachine(SVM)(Vapnik1995,1998).SVMshaverecentlybeenreceivingsignificantinterestduetoexcell

7、entresultsinvariousapplications(CristianiniandShawe-Taylor2000).SVMcombinesthetrainingefficiencyandsimplicityoflinearalgorithmswiththeaccuracyofthebestnonlineartechniquesaswellassystematicapproachforoptimalgeneraliza-tion.InmanypracticalapplicationsSVMscantoleratehigh-

8、dimensionaland/orincompletedataandoftendemonstrateperformancessuperiortothebestavailabletechniquesinclud-ingclassicalNNs(Cri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。