欢迎来到天天文库
浏览记录
ID:40102746
大小:194.77 KB
页数:14页
时间:2019-07-21
《Support vector machine as an efficient framework for stock market volatility forecasting 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CMS(2006)3:147160DOI10.1007/s10287-005-0005-5ORIGINALPAPERSupportvectormachineasanefficientframeworkforstockmarketvolatilityforecastingValeriyV.Gavrishchaka·SupriyaBanerjeePublishedonline:16February2006©Springer2006AbstractAdvantagesandlimitationsoftheexistingmodelsfor
2、practicalforecastingofstockmarketvolatilityhavebeenidentified.Supportvectormachine(SVM)havebeenpro-posedasacomplimentaryvolatilitymodelthatiscapabletoextractinformationfrommulti-scaleandhigh-dimensionalmarketdata.PresentedresultsforSP500indexsuggestthatSVMcanefficientl
3、yworkwithhigh-dimensionalinputstoaccountforvolatilitylong-memoryandmultiscaleeffectsandisoftensuperiortothemain-streamvolatilitymodels.SVM-basedframeworkforvolatilityforecastingisexpectedtobeimportantinthedevelopmentofthenovelstrategiesforvolatilitytrading,advancedris
4、kmanagementsystems,andotherappli-cationsdealingwithmulti-scaleandhigh-dimensionalmarketdata.1.IntroductionAvailabilityofhigh-resolutionandmulti-sourcedataincreasesinmanyfieldsofpracticalinterestincludingfinancialindustry.However,itiswell-knownthatthemajorityofadvancedst
5、atisticalandmachinelearningalgorithms,includingneuralnetworks(NN),canencoun-terasetofproblemscalleddimensionalitycursewhenappliedtohigh-dimensionaldata(Bishop1995).Nonstationarityofthetimeseriescanalsoimposesignificantlimitationsondataavailablefortrainingthatoftenleads
6、topoorgeneralizationabilityofthemodel.Thelatterfeatureisespeciallyrelevantforfinancialapplications.Apromisingalgorithmthatcantoleratehigh-dimensionalandincompletedataissupportvectormachine(SVM)(Vapnik1995,1998).SVMshaverecentlybeenreceivingsignificantinterestduetoexcell
7、entresultsinvariousapplications(CristianiniandShawe-Taylor2000).SVMcombinesthetrainingefficiencyandsimplicityoflinearalgorithmswiththeaccuracyofthebestnonlineartechniquesaswellassystematicapproachforoptimalgeneraliza-tion.InmanypracticalapplicationsSVMscantoleratehigh-
8、dimensionaland/orincompletedataandoftendemonstrateperformancessuperiortothebestavailabletechniquesinclud-ingclassicalNNs(Cri
此文档下载收益归作者所有